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Abstract 

There is growing interest in early warnings of adverse events, particularly through the use of human and organizational safety performance indicators. This paper examines the process of providing early warning of adverse events in complex, safety-critical systems in this third age of safety. The paper begins with a review of concepts associated with safety performance indicators, including a description of previous efforts to develop and test such indicators. A study that explored the development of safety performance indicators in two segments of marine transportation, tanker and container operations, is then described. An unbalanced nested design with missing data generalizability model for leading indicators of safety in marine transportation system was developed.  The results of the study, its implications for future work, and limitations of the research conclude the paper. In the next section, we begin by explaining the research model, analysis, metrics, and results.
A major contribution of this study is the development of a nested generalizability model using an unbalanced design and missing data. The unbalanced designs results from differing sample sizes of a facet at different levels, while missing data occurred for a variety of reasons, primarily because respondents failed to answer all survey questions. Although studies exist treating unbalanced designs and missing data (Cronbach, Gleser, Nanda & Rajaratnam, 1972; Brennan, 2001; Shavelson & Webb, 1991), few have been developed for safety-critical systems. There are three facets in the model: people, vessels, and leading indicator items. In the marine transportation system, managers, regulators, decision makers and the public are often interested in the safety performance of a vessel, and therefore the whole organization. Therefore, vessels and organizations were chosen as the objects of measurement, rather than individual crewmembers. The result is an unbalanced nested design with missing data generalizability model for leading indicators in marine transportation.  
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1. Introduction 

Disasters only happen if [tiny initiating events (TIE’s)] scale up in size or 
consequence—that is, spread throughout a large and essential department or 
scale up or down to affect other hierarchical levels in a firm. These theories 
apply when the same causes operate at multiple levels to yield what Gell-
Mann [1, p. 3] (1988, p. 3) labels ‘deep simplicity’ – a single theory 
explaining
dynamics at multiple levels [2, p. 60] (McKelvey & Andriani, 
2010, p. 60).  
Identifying factors that contribute to and cause disasters in large-scale safety-critical systems is a perennial challenge. Originally, in what has been referred to as the first age of safety, mechanical components or technical aspects of systems were the focus of efforts to dampen risk and increase safety [3] (Hale & Hovden, 1998). Following World War II, and all the way up to the Three Mile Island disaster, however, attention shifted from technical to human roles in safety and risk, broadening interest to include culture and organizational issues [4-6] (Vaughan, 1996; Weick, 1993; Roberts, 1990). Today, technical, social, organizational and culture factors that contribute to large-scale system disasters are increasingly viewed as being nested in different layers in large-scale systems, often lying dormant until catalyzed by a combination of factors that trigger the onset of a catastrophic event (Reason, 1990; Perrow, 1986; Sagan, 1993; Weick, 1993; Roberts, 1990). We have seen cascading triggers to catastrophic events in the disasters in Bhopal, Chernobyl and the space shuttles Challenger and Columbia (Vaughan, 1996; Hale & Hovden, 1998; DeJoy, 2005), in the Exxon Valdez oil spill in 1989 (Davidson, 1990), and even recently, in the 2010 BP Deepwater Horizon fire, explosion and oil spill (Gold & Casselman, 2010; Casselman & Gold, 2010; Blackmon, O’Connell, Berzon & Campoy, 2010).      
Given the enormous consequences that are attendant with these adverse events, organizations, managers, regulators and decision-makers are impatient with after-the-fact analyses of what went wrong, and increasingly interested in identifying precursors of adverse events in safety-critical systems, particularly through the use of human and organizational safety performance indicators (Mengolini & Debarberis, 2008). The report of the Baker Commission, which investigated the BP Texas City oil refinery explosion on March 23, 2005, which resulted in 15 deaths and more than 170 injuries, focused on process safety failures related to safety culture in BP’s United States refinery operations, and highlighted the importance of attention to performance indicators in advance of failure (Baker, Bowman, Erwin, Gorton, Hendershot, Leveson, Priest, Rosenthal, Tebo, Weigmann & Wilson, 2007). Similarly, efforts to identify what went wrong in the days and weeks preceding the BP Deepwater Horizon explosion, fire and oil spill focus on the importance of early warnings of impending failure and disaster (Bea, Roberts, Azwell & Gale, 2010). Other studies have shown how early warning of adverse events can be critical in accident prevention (Olive, O’Connor & Mannan, 2006; Marono, Pena & Santamaria, 2006; Vinnem, Aven, Husebo, Seljelid & Tveit, 2006). Recently, regulatory and non-governmental organizations, including the International Atomic Energy Agency (2000) and the Organization for Economic Cooperation and Development (2003), have developed guidance with respect to leading indicators, which they linked to positive safety attitudes, safety awareness and a positive safety culture (Saqib & Saddiqi, 2008). 
The tremendous interest in identifying leading indicators, however, faces significant challenges. Organizations today are part of complex, multilevel systems, comprised of individuals working in teams, in groups and in companies, for organizations that are part of globally distributed systems (National Research Council, 1994; 2003; Klein & Kozlowski, 2000). Within these complex organizational settings, precursors to adverse events, or tiny initiating events (TIE’s) (Holland, 2002), can be missed for a variety of reasons, including cognitive blindness--an inability to see what you aren’t looking for (Simons & Chabris, 1999; Simons & Rensink, 2005; Simons, Nevarez & Boot, 2005). 
Assuming that reliable indicators can be identified, generalizing those leading indicators to other organizations in the same or different industries is a challenge, particularly in large-scale systems characterized by a large number of variables, nonlinearities and uncertainties. Historically, analysis of these systems has involved their decomposition into smaller, more manageable subsystems, possibly organized in a hierarchical form, and has been associated with intense and time-critical information exchange and the need for efficient coordination mechanisms (Qin & Sun, 2006). 
New features of large-scale systems, however, suggest that historical analysis approaches may be inappropriate. Because enterprises are operating in highly networked environments, generalizability studies must consider the impacts on generalizability of the system’s structure, the integration of various technologies within the system, and consider a variety of economic, environmental and social aspects. As a result, besides a contextual analysis of large-scale systems, generalizability must also take into account extrinsic factors such as human, organizational and institutional causes, as well as intrinsic factors such as the structures and networks of large-scale systems and the interactions between extrinsic and intrinsic factors. Thus, research gaps in large-scale system generalizability models include the challenges of generalizing in a complex, interdependent world, and the need to consider both intrinsic and extrinsic factors. 
This research is motivated by the need to identify generalized precursors to adverse events in complex, distributed, large-scale systems, where the risks of missing these initiating events are substantial, as these ‘random, seemingly meaningless events that are easy to overlook or even ignore, … can spiral up into extreme events of disaster proportions.’ (McKelvey & Andriani, 2010, pp. 54-55). In this paper, we describe a study undertaken with three distributed multinational organizations to identify and test a set of generalized leading indicators of safety. The paper begins with a review of concepts associated with performance indicators in complex systems, including a description of previous efforts to develop and test such indicators. A study exploring the development of safety performance indicators in one large-scale system, marine transportation, is then described. The results of the study, its implications for future work, and limitations of the research conclude the paper. 
2. Generalizing Leading Indicators in Complex, Safety-Critical Systems
Safety-critical systems are those whose failure may result in severe consequences, such as loss of lives, significant property damage, and/or damage to the environment (Aven, 2009; Fleige, Geraldy, Gotzhein, Kuhn  & Webel, 2005; Gorman, Schintler, Kulkarni & Stough, 2004; Kujala et al., 2009). Managers in safety-critical systems prefer advance notice of adverse events, even though much data in the system, such as data about workplace injuries, economic losses, environmental pollution and fatalities, are lagging indicators, or “after-the-loss” measures with limited predictive capability (Dyreborg, 2009). Compared with conventional measures which provide status and historical information, leading indicators draw on trend information to develop forecasts. By analyzing trends, predictions can be developed about the outcomes of certain activities, which can provide managers with the data they need to make decisions and take proactive or corrective actions if necessary (Sawalha & Sayed, 2006).
Leading indicators provide measures of the performance of a key work process, culture and behavior before an unwanted outcome happens. In contrast, lagging indicators represent harm to people or assets based on the outcomes of accident. They are the “ultimate evaluation of proactive monitoring” (Dyreborg, 2009). In safety-critical systems, leading indicators have been used to measure safety in nuclear power plants (Wreathall, et al., 1999; Hemel et al., 2004), as well as in aviation (Díaz and Cabrera, 1997; Sachon and Cornell, 2000; Wong et al., 2006) and maritime transportation (Håvold, 2000; Hetherington et al., 2006; Zohar, 1980). Leading indicators are widely used in economics and finance (Banerjee & Marcellino, 2006; Broome & Morley, 2004; Burkart & Coudert, 2002; Camba-Mendez et al., 2001; Estrella & Trubin, 2006; Kwark, 2002; Megna & Xu, 2003; Moosa, 1998; Qi, 2001; Rua & Nunes, 2005; Wreathall, 2009) and in the healthcare industry (Bush et al., 2002; Davies & Finch, 2003; Hogan et al., 2003; Lazarus et al., 2002; Najmi & Magruder, 2004). However, although leading indicators are widely used in different systems, there is no generalized model of leading indicators developed across different organizations (Völckner & Sattler, 2007).   
Organizations have utilized different approaches to identify leading indicators, including factor analysis (Håvold & Nesset, 2009; Lu & Shang, 2005), correlation analysis (Pousette, Larsson & Törner, 2008; Zohar & Luria, 2005), and regression (Cooper & Phillips, 2004; Meliá, Mearns, Silva & Lima, 2008). However, variations in leading organizational structures either within an industry or across different industries make identifying leading indicators difficult, and the leading indicators identified differ in terms of both number and content (Brown & Holmes, 1986; Håvold, 2005; Håvold & Nesset, 2009; Zohar, 1980). In fact, most studies cannot “replicate a leading indicators solution from a previous study, not even within the same type of company” (Guldenmund, 2007). 

Compounding the problem of identifying leading indicators in safety-critical systems is their relatively weak predictive quality to date (Gonçalves, Silva, Lima & Meliá, 2008; Håvold, 2005; Meliá et al., 2008; Pousette et al., 2008), with very low R-square values of less than 30%. Thus, even with sophisticated statistical analysis, leading indicators alone may not be sufficient to provide early warnings in safety-critical systems: “As catastrophes are rare, not suffering a catastrophe is not proof that safety controls are sufficient and fully effective” (Conlin, Brabazon & Lee, 2004). To address the weaknesses of these quantitative studies, recent leading indicator analyses have adopted a compositional approach, coupling quantitative and qualitative analyses, using safety cases, case studies and human and organizational error analyses, as well as statitiscal analyses (Braun, Philipps, Schatz & Wagner, 2009; Conlin et al., 2004; Kelly & McDermid, 2001; McBurney & Parsons, 2001).
Thus, generalizing leading indicator results across different studies, domains and systems is a persistent research challenge for several reasons. First, it is difficult to generalize from any sample estimate to its corresponding population characteristics; from population characteristics to theory; or from experimental findings to theory (Lee & Baskerville, 2003). These problems are especially difficult in large-scale systems, which are characterized by a large number of variables, nonlinearities and uncertainties. At the same time, although the consequences can be severe when an adverse event happens in a safety-critical system, the probability of such an event happening is usually very small. Generalizability in safety-critical systems therefore becomes difficult when the data are characterized as sparse or arising from infrequent events because generalizability is affected by sample sizes (Brennan, 2001). Thus, it is difficult to scale and extrapolate from sparse samples in safety-critical systems. Finally, generalizing in safety critical systems may require enormous computing, human and financial resources in order to run enough test cases or simulations in order to generalize (Liu & Aitkin, 2008). 
Generalized prediction models that have been developed therefore suffer from limitations, such as the need for recalibration after original models are applied to local conditions, which requires model flexibility (Altman, 1968; Collins and Green, 1982; Grice and Ingram, 2001; Sawalha and Sayed, 2006). In addition, models may be based on a known or unrealistic distributions (Chang, 2004; Sawalha and Sayed, 2006; Grun and Leisch, 2007) or uncorrelated error terms (Elyasiani et al., 2007). In practice, distributions may be unknown or the data may be serially correlated, all of which cause problems for generalized models. 
Identifying generalized leading indicators can be difficult when system characteristics have their theoretical origins at the individual level and emergent properties at higher levels—for instance, in systems where organizational climate, individual and team effectiveness, and organizational learning are important. Organizational culture and climate are both individual and group level constructs—incorporate 2009 climate references, along with Klein & Kozlowski references….. Thus, leading indicators of adverse events in complex, multi-level systems of organizations often reflect the complexity of their domain and provide precursors at multiple organizational levels (House, Rousseau & Thomas-Hunt, 1995).  
A social organization can be conceptualized as a set of subsystems composed of more elemental components that are arrayed in a hierarchical structure. The linkage among levels—individual, group and organizational—and subsystems is determined by their bond strength, defined as the extent to which characteristic behaviors, dynamics and processes of one level or unit influence the characteristics, behaviors dynamics and processes of another level or unit (25--Simon, 1973). Karl Weick (26-1976) uses the same notion of coupling to describe how closely tied different units or subsystems are, and factors such as organizational goals, technology and structure as well as enabling processes such as leadership, socialization and culture, influence coupling (Klein & Kozlowski, 2000). These factors that are related to coupling or bond strength between organizational units can be expected to show greater links across levels for the related units (Klein & Kozlowski, 2000). 
Complexity science suggests that attention to scalability, power laws and qualities of self organization can provide powerful insights and clues into precursors of adverse events in complex, large-scale systems. Scalability laws suggest that, under the right circumstances, tiny initiating events can scale up into extreme positive or negative outcomes, so that the same cause applied at multiple levels gets amplified to generate an extreme effect extending across multiple levels (McKelvey & Andriani, 2010, p. 60). Scale-free theories point to a single generative cause to explain the dynamics at each of however many levels are being studied. Power laws have been used as indicators of scalability in action and consequently, underlying Pareto distributions (Andriani & McKelvey, 2007; 2009). 
This review suggests that generalizability challenges for leading indicators in safety-critical systems are therefore manifest. In order to address these challenges, this research adopts a multi-level compositional approach to developed a generalized leading indicator model in one safety-critical system, marine transportation. In the next section, the particular challenges of identifying leading indicators in safety-critical systems are explored.  

2.1 Generalized Leading Indicators 
Generalizability is a statistical framework for conceptualizing, investigating, and designing reliable measurements (Cronbach, Gleser, Nanda & Rajaratnam, 1972; Brennan, 2001; Shavelson & Webb, 1991). Generalizability models operate from many vantage points: generalizing from a sample estimate to its corresponding population characteristics; from population characteristics to theory; or from experimental findings to theory (Lee & Baskerville, 2003). In contrast to classical test theory, in which measurement error is assumed to be undifferentiated between observations, in generalizability theory, errors are assumed to have multiple sources associated with different conditions.  Generalizability is widely studied in different domains, including business (Bottomley & Holden, 2001; Klink & Smith, 2001; Völckner & Sattler, 2007), education (Eason, 1991; Tindal, McDonald, Tedesco, Glasgow, Almond, Crawford & Hollenbeck, 2003), economics (Forni, 2004; Nieuwenhuyze, 2005), healthcare (Blanco, Olfson, Okuda, Nunes, Liu & Hasin, 2008) and transportation (Sawalha & Sayed, 2006). 
The eventual purpose of developing leading indicator models is to predict the safety performance of a system using the leading indicators. A generalizability model can accurately estimate the reliability of leading indicator measures by examining multiple sources of error variance and their relationships simultaneously (Eason, 1991). Generalized leading indicators thus consider multiple sources of error simultaneously, providing power for both relative decisions and absolute decisions; making no assumptions about the overlap of sources of error, they are also helpful in estimating interaction effects (vanLeeuwen, 1997). In safety-critical systems, generalized prediction models are of interest because of the enormity of failure consequences in these systems. Despite this need, however, little work on generalizability has been done in safety-critical systems, all of which suggests the following research questions. 
2.2 Research Questions
The first research question is how to generalize leading indicators in safety-critical systems. Many current generalizability studies focus on the generalizability of respondents’ perceptions in education (Eason, 1991; Shavelson & Dempsey-Atwood, 1976; Tindal et al., 2003), psychology (Thompson & Melancon, 1987; Føllesdal & Hagtvet, 2009), job analysis (Hartman, Fuqua & Jenkins, 1988;  Webb & Shavelson, 1981) and marketing (Bottomley & Holden, 2001; Klink & Smith, 2001; Völckner & Sattler, 2007), none of which are safety-critical systems. In these systems, the structure of the components is easily identified, such as whether the components are related to each other or are nested within each other. However, in safety-critical systems, the interdependencies between components and subsystems may be less clear, even though they have a substantial impact on each other  and on performance in the system. Of particular interest from a modeling perspective are how multiple sources of errors are organized in the systems.  
A second research question focuses on how to develop predictive models in safety-critical systems. After  leading indicators are generalized from a study sample to a broader set of safety-critical systems, a natural theoretical challenge is how to use these leading indicators efficiently, that is, how leading indicators could best “explain and forecast large accidents” (Harms-Ringdahl, 2009). To do this, many studies utilize either subjective measurements such as perceptions (Völckner and Sattler, 2007) or objective measurements such as whether a firm was bankrupt or not (Altman, 1968) as the performance measurements. However, in safety-critical systems, both objective and subjective measurements provide important insights. The objective measurements can include the number of accidents, incidents, near losses and undesirable safety states during a certain period. However, these data are sparse because they are driven by infrequent events in safety-critical systems. Therefore, subjective measurements such as case studies, safety cases and employees’ safety perceptions are also gathered. Predictive models in safety-critical settings therefore often utilize subjective and objective measures to identify relationships between different levels of leading indicators as well as the distributions of events. 
A final research question is how to generalize predictive models across domains in safety-critical systems. If a generalized prediction model can be developed, time and money can be saved and efforts can be devoted to managing leading indicator performance. Because the probability of infrequent event happenings is so small in safety-critical systems, accident statistics are not available to enable development of predictive models and missing data is a common problem in cross-sectional research. In addition, because different organizations, particularly in different industries, have their own characteristics, the assumption of event distribution in one organization may not be realistic in another organization. In order to develop a generalizability, model flexibility is required with necessary parameter recalibration. The following section describes a study to address these research questions. . 
 3. Method 

3.1 Background 

This research was undertaken under the umbrella of the American Bureau of Shipping’s Leading Indicators of Safety project, a seven-year project whose focus was to identify, analyze and evaluate a set of leading safety indicators in marine transportation (Ayyalasomayajula, 2007; Wang, 2008; Grabowski, You, Song, Wang & Merrick, 2010). Three international energy and transportation companies participated in the study: a large global energy transportation organization, a small U.S. subsidiary of a major multinational energy transportation company, and an international container shipping organization. In this study, 1599 safety culture surveys were administered to ship- and shore-based participants aboard 92 vessels in three organizations around the world. Safety performance data was provided by the industry partners, the U.S. Coast Guard, and a variety of other open source and proprietary data sources (Grabowski, et al., 2010) and case studies of the participant organizations were developed (Ayyalasomayajula, 2007; Wang, 2008; You, 2010). The development and testing of the leading indicators of safety identified from this analysis is described in Grabowski, et al. (2010). In this work, we describe the analysis undertaken with this data to generalize the models and leading indicators previously identified.
3.2 Setting 

The rapid growth of seaborne trade, the complexity of the marine transportation system (MTS), and heavy marine traffic with many vessels place a burden on safety and security in marine transportation, stretching the system  MTS to its limits to cope with the size, speed, and diversity of vessels and users, and raising the risk of accidents (Hetherington, Flin & Mearns, 2006). Vessels travel long distances on busy waterways, in poor weather conditions, with cargoes that are flammable, combustible, or dangerous (U.S. Committee on the Marine Transportation Systems, 2008b). Technological advances contribute to decreased manning, in some cases leaving 22 seafarers on a VLCC compared to 25 years ago when the average cargo ship had a crew of between 40 and 50, which which may contribute to human errors in accidents (Hetherington et al., 2006). The growing technical complexity of large maritime and offshore engineering systems, from vessels to offshore oil platforms and  offshore support vessels, together with intense public concern regarding their safety, also spur interest in maritime safety (Sii, et al., 2001; jala et al., 2009; Casselman & Gold, 2010). 

Few people, however, understand the importance of safety in the marine system until an accident occurs. Severe and large-scale accidents, however, quickly remind the world of the need for safety in marine transportation systems. Although maritime accidents occur infrequently, their consequences, including economic and property losses, pollution and fatalities, are severe. For example, the wreck of the Admiral Nakhimov, after a collision with the large bulk carrier Pyotr Vasyov in 1986, caused 425 people to perish; the capsizing of the ferry Herald of Free Enterprise in 1997 resulted in the death of 193 passengers and crewmembers; the ferry Dona Paz capsized in 1987, the worst peace-time maritime disaster, resulting in the deaths of an estimated 4386 passengers and crewmembers; and the sinking of the Estonia in 1994 resulted in 852 people losing their lives (Vanem and Skjong, 2006). In the grounding of the Exxon Valdez on Bligh Reef, Alaska, 11 million gallons of crude oil spilled into Prince William Sound, Alaska, affecting 1500 miles of shoreline with both immediate and lingering impacts on fish, wildlife resources, and lives of people in coastal communities. This cost Exxon Corporation $3.5B in clean up costs and $5B in legal and financial settlements (Macalister, 2010). One of the industry partners for this research, OSG, was fined $37 million for its deliberate vessel pollution (U.S. Department of Justice, 2006). Recently, the Deepwater Horizon incident resulted in the loss of 11 lives, 17 injuries, and has cost BP an estimated $10B in financial and environmental costs from the explosion, fire and oil spill from the deep water offshore oil rig (BP, 2010; Macalister, 2010; Huffington Post, 2010). In 2006 alone, marine accidents caused the deaths of 59 professional mariners, 15 passengers, and 703 recreational boaters (U.S. Committee on the MTS, 2008a). Therefore, there has been great attention to the prevention of similar accidents. 

However, developing generalized models in safety-critical systems where failure rates are low, such as in marine transportation, where failure rates range from 10-6 to 10-4 is challenging.  Ship collisions between crossing vessels were found to occur on the order of  2.7 × 10-4 for crossing ships and 1.0 × 10-5 for meeting vessels in the Gulf of Finland (Kujala, Hänninen, Arola & Ylitalo, 2009); fuel oil spills from U.K. offshore support vessels were found to occur on the order of 0.045/year ( 5.1 × 10-6/hour) (Sii, Ruxton & Wang, 2001); and collisions and allisions were found to occur on the order of 1.0 × 10-5 in Shanghai harbor between 1995-2003 (Hu, Fang, Xia & Xi, 2007). Predicting the arrival of infrequent events in the marine transportation system is no easy task, particularly when compared with 30 years ago, because the number of risk events has declined precipitously over the past thirty years, and models of adverse events show a Pareto distribution. Worldwide, the number of oil tanker spills between 1970 to 2009 (Figure 1) and the volume of spills (Figure 2) have decreased significantly over the past 40 years (International Tanker Operators Pollution Federation, 2010), illustrating the challenges of predicting infrequent catastrophic events in large-scale safety-critical systems. 
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Figure 1. Number of Oil Spills Worldwide, 1970 - 2009 
(Source: International Tanker Operators Pollution Federation (ITOPF), 2010)
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Figure 2.  Volume of Oil Spilled Worldwide, 1970 - 2009 
(Source: International Tanker Operators Pollution Federation (ITOPF), 2010)
Safety models have been developed in marine transportation to address these risks and to assist in systematically recognizing, evaluating and controlling risks by integrating assessments of systems, technology, and people; they often utilize multidimensional approaches to consider factors before, during and after an accident; and provide methods for taking proactive actions in advance of future adverse events. Several qualitative safety models have been developed to identify safety causal factors and control risk, including Reason’s “Swiss cheese” model (Reason, 1990) and the Safety Management Assessment System (SMAS) (Hee, Pickrell, Bea, Roberts & Williamson, 1999). These models often depend on subjective measures provided by experts, which limits the generalizability of the resulting models. 

Similarly, a number of quantitative models have been developed (Hu et al., 2007; Jin, Kite-Powell, Thunberg, Solow & Talley, 2002; Kujala et al., 2009; Sii et al., 2001; Wang, Ruxton & Labrie, 1995; Wang & Zhang, 2007), using a variety of techniques, including Probabilistic Risk Analysis (PRA), which is intended to assess the probability of failures and its consequences (Baron & Paté-Cornell, 1999; Cowing, Paté-Cornell & Glynn, 2004; Durga Rao, Gopika, Sanyasi Rao, Kushwaha, Verma & Srividya, 2009; Kelly & Smith, 2009; Kujala et al., 2009; Martz & Picard, 1998; Siu & Kelly, 1998). By studying historical accident data, PRA develops statistical models of historical failure rates to predict future accidents. 

Artificial Neural Networks (ANN) have also been used to model safety in the MTS, utilizing data pattern recognition to predict types of vessel accidents with input variables such as time, location, weather, river stage, and traffic (Buxton, Cuckson & Thanopoulos, 1997; Hashemi, Le Blanc, Rucks & Shearry, 1995; Lisowski, Rak & Czechowicz, 2000; Ung, Williams, Bonsall & Wang, 2006). Other methods, such as multiple discriminant analysis and logistic regression (Hashemi et al., 1995) and econometric modeling (Knapp & Franses, 2009), have also been used to predict vessel accidents. There are a number of problems with these studies, however: the models often consider mixed factors which are not easy to manage; most of the factors identified are not leading indicators, and most studies use lagging factors, i.e. the consequences of accidents (Hu et al., 2007; Kujala et al., 2009; Sii et al., 2001) to analyze safety performance and risk levels. Thus, there is a need for robust leading indicator models of safety in marine transportation. 

Although many studies have been undertaken to identify leading indicators in marine transportation (Ek & Akselsson, 2005; Håvold, 2005; Håvold & Nesset, 2009; Lagoudis, Lalwani & Naim, 2006; Lu & Shang, 2005), there is a large variety in the predictive safety factors that have been identified (Guldenmund, 2007). As a result, many of the leading indicators studies cannot replicate a factor solution from a previous study, not even within the same type of company (Guldenmund, 2007). Despite this, however, the marine transportation leading indicator studies show that there are still a limited number of common themes (Guldenmund, 2007), and a safety factor pertaining to “safety management” pops up in the analyses about 75% of the time and in about two-thirds of the studies (Flin et al., 2000). This provides a clue about the likelihood of common and/or generalizable set of safety factors within the marine transportation system. Only recently have efforts been devoted to identifying leading indicators in marine transportation, and in developing generalized models that transcend anecdotal results or analyses of single organizations (Grabowski, Ayyalasomayajula, Merrick, Harrald & Roberts, 2007; Grabowski, Ayyalasomayajula, Merrick & McCafferty, 2007; Grabowski, You, Song, Wang & Merrick, 2010). 

3.3 Participants 

Three types of participants within the industry partner organizations were identified—organizations, vessels, and people—reflecting the participants and organizational structures in marine transportation. 
Organizations (O)

Beginning in 2005, two tanker organizations joined the project. One was a domestic U.S. subsidiary of a major multinational energy transportation organization (Industry Partner 1) and the other was an international tanker organization (Industry Partner 2). In 2007, a third marine transportation organization, a domestic U.S. subsidiary of the world’s largest container shipping organization (Industry Partner 3), joined the project. The safety culture, safety performance and case study data utilized in this study were collected from these three organizations.

Organization 1 is a privately held U.S. energy transportation subsidiary of a large multinational organization. In 2005, when survey data were collected, the organization had approximately 500 employees and operated 7 U.S. flag oil tankers and 2 tug escorts in coastal U.S. waters, including the Trans Alaskan Pipelines (TAPS) trade, the U.S. Gulf coast trade, and in the northeast U.S. In 2005-2006, the company was completing the sale and discontinuation of its towing operations (Grabowski, et al., 2007a; Merrick, Grabowski, Ayyalasomayajula & Harrald, 2005), and therefore, the focus of data collection and analysis was the organization’s tanker fleet.

Organization 2 is a global energy transportation service provider, transporting crude oil, petroleum products, and dry bulk commodities throughout the world. In 2008, it owned and operated an international flag and U.S. flag fleet of 156 vessels, 117 of which were operating vessels and 39 of which were under construction, aggregating 15.5 million deadweight tons (Grabowski, et al., 2007b). In 2008, it was the second largest publicly traded oil tanker company in the world, measured by the size of its fleet, and the company had nearly 4000 employees (Overseas Shipholding Group (OSG), 2010; Hoovers, 2010a).
Organization 3 is the U.S. subsidiary of a global comprehensive provider of logistics, maritime and transportation services to government agencies. The organization has offices in more than 125 countries worldwide, and has more than 100,000 employees. Its primary activities are in the container shipping business, including logistics, terminal operations, equipment management, tracking, container shipping, and ship owning and management. Worldwide, the company has more than 500 vessels, with 1.4 million containers. In North America, in 2008, it had 147 vessels making 279 port calls per week, serving approximately 18,000 customers in North America through five business units: U.S. flag liner services, integrated defense logistics, contract vessel management, specialized vessel management and vessel life cycle management (Hoovers, 2010b). 
Vessels (V)
Table 1 shows the vessel demographics for all vessels in the three organizations. Note that Organization 2 has the newest and the most vessels, while Organization 1 has the oldest and the fewest vessels. All of Organization 1’s and 3’s vessels are U.S. flag vessels; Organization 2’s vessels are a mix of U.S. and foreign flag vessels. 
Table 1   Vessel Demographics
	
	
	Organization 1
	Organization 2
	Organization 3

	Vessels
	Total
	7
	49
	46

	
	Type
	Tanker
	Tanker
	Container

	Vessel

Age
	Average
	21
	12
	18

	
	Standard deviation
	6.5
	6.6
	11.3

	
	Maximum
	27
	27
	54

	
	Minimum
	8
	5
	5

	Number of  Crewmembers
	Range
	21-25
	15-28
	15-30

	
	Average
	23
	24
	21

	Vessel Size
	< 25,000 dwt
	0
	0
	21

	
	25,000 dwt-50,000dwt
	2
	22
	8

	
	> 50,000dwt
	5
	23
	19

	Vessel Flag
	USA
	7
	5
	48

	
	Marshall Islands
	0
	35
	0

	Classification Society
	ABS
	7
	14
	43

	
	Lloyd
	0
	18
	0

	
	DNV
	0
	1
	5


People (P)
Participants in the study included all employees working on board the vessels, both management level or licensed officers, such as captains, chief engineers, mates and assistant engineers, and non-managerial or unlicensed personnel, such as deck crewmembers, engine crewmembers, and steward’s department employees. Although data were also collected from shoreside participants, including employees holding managerial positions, such as managers and supervisors, and employees holding administrative and non-managerial positions, this study focuses on the data from shipboard participants. 
Table 2 shows the demographics of the shipboard participants in the three participating organizations. Overall, Organization 2 has the youngest crewmembers, with the least experience in the maritime industry and the least experience with their current employer, while Organization 1 has the fewest participants, who have the most experience in the maritime industry and with their current employer. In each organization, most of the participants are from the Deck (Navigation and Cargo) department, and the fewest are from the Steward’s Department. Organization 1 has twice the number of licensed officers, while in Organization 2, the officers vs. unlicensed crewmembers are almost evenly split and in Organization 3, there are more unlicensed crewmembers than licensed officers. 

Table 2 Demographics of Individual Shipboard Participants (P) 
	
	Organization  1
	Organization 2
	Organization 3

	Number of Shipboard Participants 
	69
	846
	684

	Average age
	44
	37
	46

	Minimum age
	22
	20
	19

	Maximum age
	58
	69
	75

	Years in maritime industry
	21
	12
	18

	Years in current organization
	15
	4
	5

	# Licensed officers
	45
	326
	272

	# Unlicensed crew
	23
	385
	356

	# in Deck Department
	41
	423
	327

	# in Engine Department
	25
	296
	272

	# in Steward’s Department
	3
	92
	51


3.4 Instruments   
Three types of surveys were administered to the industry partners--an individual survey, a vessel survey, and an organizational survey—in order to gather data about organizational and safety performance and perceptions at different levels in the organizations. The individual safety factor questionnaire was administered to all shipboard personnel in all three industry partner organizations and was designed to obtain shipboard participants’ safety perceptions on the vessels, measuring safety factors comprised of a number of items. In addition to safety perception items, the individual survey also contained individual demographic questions such as the respondent’s nationality, experience in the marine transportation industry, and experience in the current company. A description of the survey instruments and their development is given in Grabowski, et al. (2010). Paper surveys were distributed by the Chief Officer on each vessel and surveys were mailed back postpaid by individuals to the researchers; electronic responses were also provided by respondents. 
The individual survey instrument was composed of 63 items from 13 safety factors in three levels. There were four safety factors at the organizational level: Hiring Quality People (HQP: 6 items), Safety Orientation (SO: 5 items), Promotion of Safety (POS: 9 items), and Formal Learning Systems (FLS: 8 items). There were five safety factors at the vessel level: Prioritization of Safety (PROS: 3 items), Communication (C: 7 items), Problem Identification (PI: 4 items), Vessel Feedback (VF: 2 items), and Vessel Responsibility (VR: 4 items). There were 4 safety factors at the individual level: Empowerment (E: 5 items), Anonymous Reporting (AR: 4 items), Individual Feedback (IF: 2 items) and Individual Responsibility (IR: 4 items). Another safety factor, Perceived Risk (PR: 4 items) at the individual level, was considered as both a safety factor and a safety performance measure. 

The vessel safety performance survey was designed to collect data about the safety performance of the vessels, and was filled out by the chief safety officer on each vessel. The vessel survey also included information on vessel characteristics such as vessel type, owner, operator, charterer, flag, and managing office. The organizational safety factor survey was designed to collect data about the safety performance of the organization as a whole, together with information about the vessel fleet and the constitution of personnel. The data from the organizational survey were also used as a cross check on the vessel performance data provided via the vessel survey.
A Likert-type scale of 1-5 (1 = “strongly disagree”, 5 = “strongly agree”) was used for each question associated with safety to focus on the shipboard participants’ safety perceptions. In addition, some questions were to be answered with “Yes” or “No”, and some questions were to be answered with background information.
3.5 Safety Performance

In this research, the safety performance data include the number of accidents per year, number of incidents or near losses per year, number of lost time injuries requiring more than 3 days’ absence from work (LTI>3) per year, the number of port state deficiencies per year and the number of conditions of class per year. In analysis, the safety performance measures were normalized by dividing by the number of crewmembers aboard each vessel.  The definitions of these safety performance variables follow.
Accident: An accident is an undesired event that results in personal injury, damage or loss. Accidents include loss of life or major injury to any person on board, the actual or presumed loss of a ship, her abandonment or material damage to her; collision or grounding, disablement, and also material damage caused by a ship. An accident can also be an occurrence such as the collapse of lifting gear,… a list, or a loss of cargo overboard, if the occurrence could have caused serious injury or damage to the health of any person (U.K. Marine Accident Investigation Branch. 2005).  

Incident*: An incident is defined as a triggering event, such as a human error or a mechanical failure that creates an unsafe condition that may result in an accident (Harrald, Mazzuchi, Spahn, Van Dorp, Merrick & Shresta, 1998). Examples of precipitating incidents include steering failures, propulsion failures, navigational equipment failures, electrical failures, and other equipment failures. 

Near loss: A near loss is defined as an uncontrollable event or chain of events which, under slightly different circumstances could have resulted in an accident, injury, damage or loss (Phimister, Bier & Kunreuther, 2004; U.K. Marine Accident Investigation Branch, 2005; Mearns, Whitaker & Flin, 2003).  
Lost time injury of three or more days (LTI ≥ 3): A lost-time injury of three or more days is defined as a work-related injury resulting in incapacitation for more than three consecutive days (U.K. Marine Accident Investigation Branch, 2005; Mearns et al., 2003).  
Conditions of Class: Classification societies are organizations that establish and apply technical standards in relation to the design, construction and survey of marine related facilities including ships. A vessel that has been designed and built to the appropriate rules of a society is eligible for getting a class notation from the society. Upon the successful completion of a survey, the society assigns a class notation to the ship. Periodic surveys are conducted to assess the compliance of the vessel with the rules and regulations of the society. Any deficiencies that are identified during the surveys that in the opinion of the surveyor minimize the safety of the vessel are recommended to be rectified within a specific period of time. The class notation of the vessel is valid subject to the correction of the deficiencies within the specified time frame. Deficiencies or recommendations are called the conditions of class (American Bureau of Shipping, 2004; Eversheds, 2008).  
             Port State Deficiencies: Port State Control is the process by which a nation exercises its  

             authority over foreign vessels when those vessels are in its waters subject to its 
jurisdiction. A port state deficiency is a condition found not be in compliance with the 
conditions for the relevant convention, law or regulation (U.S. Coast Guard, 2000).   
The safety performance data for the three industry partners is given in Table 3. 

Table 3   Safety Performance Data for All Three Industry Partners
	Industry Partner
	Accidents
	Near Losses
	LTI>=3
	PSD
	CC

	Organization 1 
	1
	60
	1
	6
	7

	Organization 2
	31
	40
	16
	15
	25

	Organization 3 
	47
	173
	7
	23
	39

	Total 
	79
	273
	24
	44
	71


*Incident data was only provided by Organization 3; therefore, incident data were not included in the generalization models. 
3.6 Procedure

To pre-process the data, the reliability of the survey instruments was assessed using Cronbach’s alpha, and then a factor and principal components analysis was undertaken to reduce the number of items under consideration as leading indicators. Safety factors were tested for their relationship to safety performance in order to assess their utility as leading indicators of safety, and the resulting leading indicators were tested for generalizability. 


[image: image3]
Safety climate surveys were used to gather data about safety factors, safety perceptions and safety performance in the three industry partner organizations, following similar methods in other studies (Gershon et al., 2008; Gonçalves et al., 2008; Hahn et al., 2008; Meliá et al., 2008; Pousette et al., 2008; Tharaldsen et al., 2008; Westaby and Lee, 2003; Willamson et al., 1997). Once the surveys were collected, the validity of the questionnaires was established using Cronbach’s alpha, a standard measure of the internal consistency and reliability of questionnaires. The data were examined to determine whether they were normal. Since the survey data were gathered from a Likert scale, with values discretely distributed from 1 to 5, corresponding to ‘strongly disagree’ to ‘strongly agree’, the safety factor scores were not normally distributed, as confirmed by a normality test. Appropriate parametric and nonparametric methods were then utilized for data analysis, as described in the following paragraphs.
In this study, Explanatory Factor Analysis (EFA) was undertaken to identify the underlying factor structure from the responses of the perception surveys (Schneider & Bowen, 1985; Fang, Chen & Wong, 2006; Guldenmund, 2007; Zohar, 1980). Both orthogonal and non-orthogonal rotations of the data were utilized; orthogonal rotation was used to identify the factor structure, while non-orthogonal rotation was used to verify if the underlying factors were orthogonal in reality (Johnson & Wichern, 2002). Factor analysis of the responses identified the safety factor structure for combined data from the three industry partners. Following the EFA, a confirmatory factor analysis (CFA) was undertaken in order to validate the EFA factor structure. The CFA provided information on how well the specified model explained the relations among the variables. Two experiments were performed—one based on the 14-factor model from the safety climate survey and the other based on the EFA safety factor structure, using two sets of randomly divided data. A refined safety factor structure was then developed, and the EFA and CFA safety factors were identified.  

Correlation was used to explore linear relationships between safety climate and safety behaviors, safety factors and safety performance (Gonçalves et al., 2008; Hahn and Murphy, 2008; Johnson, 2007; Meliá et al., 2008; Pousette et al., 2008; Tharaldsen et al., 2008). In this study, canonical correlation was utilized to evaluate significant relationships between the safety factors and the safety performance variables by creating canonical variates. Significance tests were executed to test whether the canonical correlations were significant using an F-test.   Significant correlations between the safety factors and the safety performance data were used to identify significant safety factors, or leading indicators. 
Qualitative methods supplemented the statistical analysis, given the historically weak relationships reported in earlier research (Gonçalves et al., 2008; Håvold, 2005; Meliá et al., 2008; Pousette et al., 2008). In this study, case studies and human and organizational error (HOE) studies were utilized to assess the role of tiny initiating events (TIE’s) or latent factors present in the systems, and to provide a richer context within which to consider the leading indicators. Case studies take a particular form in safety-critical systems, termed safety cases. A safety case is a structured line of arguments that identifies safety requirements and hazards in a system, and is also used after an accident or incident to identify lessons learned and develop recommendations from failure analyses (Wang, 2002; Johnson & Palanque, 2004; Conlin, Brabazon & Lee, 2004; Braun, Philipps, Schatz & Wagner, 2009). 

Following the factor analysis and case analyses, the generalizability of the factor model was then tested using a G (Generalizability) study and a D (Decision) study. A G study was first conducted to estimate the variance components associated with the facets and their interaction effects, which provided information about the sources of variability that influence the generalizability of the observations. The variance components identified the magnitude of variance from the universe of admissible observations. Following this, a D study was used to estimate a generalizability coefficient for a particular universe score of interest. This coefficient provided an estimate of to what extent we can generalize based on the results of a particular measurement procedure across the universe. This coefficient was determined by the magnitude of variance components associated with the relevant facets, the sample size used in each facet, and whether the facets are treated as fixed or random. In addition, the D study included only facets of interest and varies those values to determine the optimum number of items, groups, or persons to include in the research study to achieve generalizable measurement (Brennan, 2001; Shavelson and Webb, 1991).

In order to develop generalizability models under different conditions, the research started from a crossed design generalizability model, a two-facet model, denoted as p d i. The variance was divided into several components associated with the main effects and the interaction effects. The calculation of the expected values and variances were developed in the G-study, together with the generalizability coefficient (G2) and the index of dependability (phi-coefficient or ), which examine whether the leading indicators can be generalized from the study sample to the universe of generalization. 

The main purpose in the D-study was to obtain more reliable generalizability coefficients and phi coefficient s using various sample sizes. We developed the models using both people and groups as the objects of measurement in the D-study. The methodologies can also be extended to other scenarios where different facets are selected as the object of measurement. However, in reality, not all facets are crossed with each other. In order to

handle this issue, we developed a nested design generalizability model, which is derived

from the crossed design. The calculation of the expected values, variances, generalizability coefficient s, and phi-coefficient are described in the G-study. 

In the D-study, we investigated the generalizability coefficients and phi-coefficients using various sample sizes in order to obtain a reliability coefficient. A description of the calculation of the generalizability coefficients and phi-coefficients is given in the G-study, and a description of improved coefficient reliability through sensitivity analysis of sample sizes is given in the D-study. 

3.7 Data and Data Collection

Earlier work focused on the identification and analysis of leading indicators in marine transportation organizations (Ayyalasomayajula, 2007; Wang, 2008; Grabowski, You, Song, Wang & Merrick, 2010). All data were collected using either paper- or web-based surveys. The surveys were sent to Organization 1 between January and March 2006 and to Organization 2 between March and July 2006, requesting information on safety climate and safety performance during calendar year 2005. The surveys were sent to Organization 3 between May and August 2007 to obtain safety climate and safety performance data based on calendar year 2006. 

A total of 1599 individual shipboard surveys, 102 vessel safety performance responses, and 3 organizational safety performance surveys were collected (Table 4).  The  response rates for the three organizations ranged from 42 – 65% for shipboard surveys, and between 61 and 100% for the vessel surveys. All three organizational surveys were collected, for a 100% response rate.
Table 4   Survey Responses
	
	Organization 1
	Organization 2
	Organization 3

	
	Shipboard
	Vessel
	Shipboard
	Vessel
	Shipboard
	Vessel

	# Surveys Administered  
	162
	7
	2000
	80
	1048
	48

	# Surveys Received
	69
	7
	846
	49
	684
	46

	Response Rate
	42.6%
	100%
	42.3%
	61.25%
	65.3%
	95.8%


4. Results

4.1 Survey Reliability Analysis
A Cronbach alpha analysis was performed to verify the internal consistency of the surveys. As a rule, a Cronbach above 0.7 is considered to be acceptable (Cooper & Phillips, 2004) while a Cronbach alpha value of less than 0.7 leads to factor rejection (Byles, Parkinson, Nair, Watson & Valentine, 2007). The results in Table 5 show that all Cronbach alphas are above 0.7, indicating good reliability. 
Table 5   Cronbach Alpha for Three Organizations’ Data
	Level
	Safety Factor
	Alpha

	Organizational Level
	Hiring Quality People
	0.8547

	
	Safety Orientation
	0.8481

	
	Promotion of Safety 
	0.9199

	
	Formal Learning Systems
	0.8714

	Vessel Level
	Prioritization of Safety
	0.7933

	
	Communication
	0.9107

	
	Problem Identification
	0.8028

	
	Vessel Feedback
	0.8319

	
	Vessel Responsibility
	0.8657

	Individual Level
	Empowerment
	0.8726

	
	Anonymous Reporting
	0.8333

	
	Individual Feedback
	0.8617

	
	Individual Responsibility
	0.8298

	
	Perceived Risk
	0.8578


4.2 Factor Analysis
The 1599 observations from participants in the three industry partner organizations were split into two groups: 800 observations--35 from Organization 1; 423 from Organization 2; and 342 from Organization 3—constituted the data sample for the EFA, and the other 799 observations were utilized for the CFA. 6 factors with 67 items, explaining 83.13% of the total variance, were extracted (Table 5). The Cronbach alpha values of all factors were greater than 0.7, which indicated the internal consistency with each factor and the underlying factor structure was reliable. 
Table 6 Factor Structure using SMC in Three Organizations

	Factor
	Factor Items
	Cronbach (
	Eigenvalue
	% of Variance
	Cumulative Percentage

	Factor 1: Openness and Receptivity
	C1-7, PI1-4, VF1-2,VR1-4, EM1-5, IF1-2, PR1-4
	0.9588
	24.374
	58.57
	58.57

	Factor 2: Life Cycle Human Safety: Hiring Quality People, Promotion of Safety
	HQP1-6, POS1-9
	0.9295
	4.084
	9.81
	68.38

	Factor 3: Anonymous Reporting
	AR1-4
	0.8333
	1.994
	4.79
	73.17

	Factor 4: Safety Orientation
	SO1-5
	0.8023
	1.477
	3.55
	76.72

	Factor 5: Prioritization of Safety, Individual Responsibility
	PROS1-3, IR1-4
	0.8359
	1.405
	3.38
	80.10

	Factor 6: Formal Learning Systems
	FLS1-8
	0.8336
	1.262
	3.03
	83.13


Table 7  Fit Statistics for EFA using SMC in Three Organizations

	EFA Fit Index
	Value by ML
	Value by ULS

	Fit Function
	14.6570
	5.8016

	Goodness of Fit Index (GFI)
	0.6492
	0.9876

	GFI Adjusted for Degrees of Freedom (AGFI)
	0.6246
	0.9867

	Root Mean Square Residual (RMSR)
	0.0540
	0.0505

	Parsimonious GFI (PGFI)
	0.6251
	0.9510

	Chi-square
	1451.0433
	-

	Chi-square DF
	2129
	-

	Pr > Chi-square
	1.0000
	-


Table 7 shows the fit statistics of CFA using 799 observations for the factor structure in Table 6. The maximum likelihood method shows a non-significant chi-square value, indicating the model fits the data well. The unweighted least square (ULS) method shows GFI = 0.9876 > 0.95, AGFI = 0.9867 > 0.95, PGFI = 0.9510 > 0.90, and RMSR around 0.05. All these indices indicate the model fit the data well.

In addition to verifying the factor structure in Table 6, the 14-factor model was also verified using CFA. The fit statistics in Table 8 show that the GFI = 0.99, AGFI = 0.99, PGFI = 0.92, and RMSR < 0.05. These indices indicate that the 14-factor model is as good as the factor structure in Table 6; therefore, the 14-factor model is acceptable and was used for further analysis.
Table 8   Fit Statistics for 14-Factor Model in Three Organizations

	EFA Fit Index
	Value by ML
	Value by ULS

	Fit Function
	11.0061
	4.2352

	Goodness of Fit Index (GFI)
	0.7184
	0.9910

	GFI Adjusted for Degrees of Freedom (AGFI)
	0.6875
	0.9900

	Root Mean Square Residual (RMSR)
	0.0502
	0.0431

	Parsimonious GFI (PGFI)
	0.6670
	0.9201

	Chi-square
	1089.6083
	-

	Chi-square DF
	2053
	-

	Pr > Chi-square
	1.0000
	-


4.3 Correlation

After extracting the factors and identifying the underlying safety factor structure, the relationships between the safety factors and safety performance were examined. Table 9 shows the canonical correlations between the set of safety performance variables and the set of items associated with each safety factor. The F-test shows the significant correlations at the 95% confidence level between the safety performance canonical variate and the “Promotion of Safety”, “Problem Identification” canonical variates respectively. In addition, the correlation between the pair of safety performance variates and “Hiring Quality People” variate is significant at the 90% confidence level. These suggest there is a reliable and significant relationship between the set of safety performance variables and the set of these safety factor items respectively. Canonical correlation analysis of the Promotion of Safety, Problem Identification and Hiring Quality People safety factors identified specific items as leading indicators, as seen in Table 9. 
Table 9 Canonical Correlation Statistics between Safety Performance and All Safety Factors
	Level
	Safety Factor
	Correlation
	% of VAR
	F value
	DF
	Pr > F

	Organizational Level
	Hiring Quality People
	0.49
	46.93
	1.44
	36
	0.05

	
	Safety Orientation
	0.42
	45.97
	1.25
	30
	0.18

	
	Promotion of Safety
	0.63
	51.72
	1.71
	54
	0.00

	
	Formal Learning Systems
	0.4279
	42.17
	0.85
	48
	0.75

	Vessel Level
	Prioritization of Safety
	0.29
	47.91
	0.91
	18
	0.57

	
	Communication
	0.43
	39.76
	1.07
	42
	0.36

	
	Problem Identification
	0.50
	68.99
	1.61
	24
	0.04

	
	Vessel Feedback
	0.40
	83.65
	1.58
	12
	0.10

	
	Vessel Responsibility
	0.46
	74.39
	1.16
	24
	0.28

	Individual Level
	Empowerment
	0.41
	50.66
	1.06
	30
	0.40

	
	Anonymous Reporting
	0.38
	62.73
	0.89
	24
	0.61

	
	Individual Feedback
	0.34
	65.68
	1.43
	12
	0.16

	
	Individual Responsibility
	0.36
	48.09
	1.05
	24
	0.41

	
	Perceived Risk
	0.50
	82.69
	1.28
	24
	0.17


Combining the analyses in this section shows the common leading indicators, common leading indicator metrics, and specific leading indicator metrics in the three industry partner organizations (Table 9). Common leading indicators are defined as leading indicators identified in at least two organizations or using the pooled data in three organizations. The items associated with common leading indicators constitute common leading indicator metrics. Specific leading indicators are defined as leading indicators identified in only one organization.

Table 10 Common and Specific Leading Indicators in Three Organizations

	Level
	Safety Factor
	Common Leading Indicator metrics
	Specific Leading

Indicator metrics

	Organizational Level
	Hiring Quality People
	HQP2 – HQP6
	–

	
	Safety Orientation
	SO1 – SO5
	–

	
	Promotion of Safety
	POS1 – POS8
	–

	
	Formal Learning Systems
	FLS1, FLS4– FLS8
	FLS2 (Org.2), FLS3(Org. 3)

	Vessel Level
	Prioritization of Safety
	–
	–

	
	Communication
	C2 – C7
	C1(Org. 2)

	
	Problem Identification
	PI1, PI2
	PI3 (Org. 3)

	
	Vessel Feedback
	VF1, VF2
	

	
	Vessel Responsibility
	VR2
	VR1, VR3, VR4 (Org. 2)

	Individual Level
	Empowerment
	EM3 – EM5
	EM1 (Org. 1), EM2 (Org. 3)

	
	Anonymous Reporting
	AR2, AR3
	AR1, AR4 (Org. 3)

	
	Individual Feedback
	IF1, IF2
	

	
	Individual Responsibility
	IR1, IR2, IR4
	IR3 (Org. 3)

	
	Perceived Risk
	PR1 – PR4
	–


Table 12 shows that at the organizational level, all safety factors are common leading indicators. Significant correlations are found between the safety factors at the organizational level and high levels of safety performance. At the vessel level, all safety factors except “Prioritization of Safety” are common leading indicators. We also notice that “Prioritization of Safety” is not a specific leading indicator, either. Thus, it is not a leading indicator. They are also found to be significantly correlated with high levels of safety performance. At the individual level, all safety factors are common leading indicators. These safety factors are all found to be significantly correlated with high levels of safety performance.

The results in Table 12 “can serve as a starter kit for organizations looking to operational leading indicators and to incorporate them into existing or new safety management systems” (Grabowski et al., 2010). It also prepares for the generalizability model of leading indicators in the next section. Further discussion about these safety factors will be given in the next section.
4.4 Benchmarking    
The leading indicators identified in this study were compared with leading indicators identified in other marine transportation systems (MTS) studies and in studies in other industries, as well as the methods used in other leading indicator studies (Appendix A, Tables A1 and A2). EFA and CFA are the most frequently used methods to determine the dimensional structure of safety factors, especially since there exists no agreement on the dimensions of safety climate (Tharaldsen et al., 2008). 
Correlation analyses, including Pearson correlation, Spearman correlation, and canonical correlation, have been used to explore significant relationship between safety factors and safety performance (Håvold, 2005) and regression methods are also widely used to find the consolidated effects of multiple safety factors on safety performance (Håvold, 2005, Ek et al., 2005). 
Table A1 also shows that multiple methods are often used, primarily because it is difficult to establish safety factors as large-scale safety-critical systems become more complex and difficult to understand (Grabowski et al., 2010) and because there exists no agreement on the dimensions of safety climate (Tharaldsen et al., 2008), suggesting that factor analysis is “more art than science” (Tabachnick & Fidell, 2001). Since different studies incorporate different extraction and rotation methods, different combinations of different methods will generate different results. Therefore, multiple methods are often utilized to verify factor structures. 
In addition to the safety factor and leading indicator analyses, the benchmarking analysis also considered human and organizational error  (HOE) studies and safety cases in the domain, two important qualitative approaches used in marine transportation to calibrate risk (U.S. Coast Guard, 2000; 2001; ABS, 2004). Thus, the leading indicator results were compared to qualitative and quantitative analyses in marine transportation and other safety-critical systems, lending support to the individual, group and organizational leading indicators identified (Tables A1 and A2). The results suggest that the leading indicators identified in this study are common with those identified in other studies and  can be generalized across different organizations in marine transportation systems and other industries. A generalized analysis of these initial findings will be described in the following sections. 
5. Generalizability of the Leading Indicators 

5.1 Research Questions

The next step was to determine the identified leading indicators were generalizable to other organizations. In terms of the marine transportation system, the research questions were the following: 
(1) What is the reliability of the leading indicator survey? What is the generalizability coefficient and the index of dependability?
(2) What is the effect on reliability and measurement precision of using a different numbers of items in the survey instrument? Can the coefficients, i.e. reliability, be improved if we use more items? Can the results in our study be generalized across different vessels in marine transportation system?
(3) What is the effect on reliability and measurement precision of using a different number of shipboard participants? If we sample more crewmembers on each vessel, can we improve the reliability? Can the results be generalized across different vessels?
(4) What is the effect on reliability and measurement precision of using a different number of vessels? If we sample more vessels, can we improve the reliability? Can the results be generalized across different organizations in marine transportation systems?

The objective of the G-Study (research question 1) was to derive the magnitude of the estimates of variance components by considering multiple sources of errors. Questions (2) – (4) were associated with the D-Study. In the D study, the goal was to determine whether the leading indicators were stable and consistent across different sets of leading indicators, and thus, generalizable from the study sample to an entire population.
5.2 Assumptions

Several assumptions govern the application of generalizability theory in this research: 
(1) The object of measure is the vessel.

(2) The facets include people, leading indicator items, and organizations.

(3) The facet of people is nested within the vessel.

(4) For each organization, the universe of admissible observations and the universe of generalizations involve the people and leading indicator items.

(5) The number of leading indicator items is assumed to be essentially infinite.

(6) Generalizability theory makes no assumptions about the distribution form of the data. It assumes that the data set is a representative sample of the universe.

For assumption (5), as mentioned previously, although the number of leading indicator items in our study is finite, the total number of leading indicators, i.e. the population size, is infinite. It is impossible to enumerate all leading indicator items across various organizations in safety-critical systems. Similarly, we assume the sizes of vessels and people, i.e. the numbers of vessels and people in our study are sample sizes, not population sizes. This is important for variance components. Although in most cases, the population, i.e. the facet of people, is assumed to be the object of measure, in marine transportation systems, decision-makers are often interested in the safety performance of the vessel (U.S. Coast Guard, 2008). In this study, people, i.e. the shipboard crewmembers, are sampled in order to investigate the safety performance of the vessel.

Table 11 shows the identified leading indicators and leading indicator metrics, those common across the three organizations and those specific to a particular organization, which will be used in the generalizability model. Intuitively speaking, the common leading indicator items should be included in the generalizability model. But we do not know whether the specific items are generalizable. Therefore, we will include these items in our model, together with the common leading indicator items, to test the generalizability of these items. The analysis then determines the reliability of these leading indicator items in marine transportation systems using many crewmembers, vessels and shipping organizations. If these leading indicators can provide stable and consistent scores across different individuals, vessels, and even organizations, they can be utilized with increased confidence to aid in the evaluation of safety performance, and relative and absolute decisions can be made based on the generalizability results.

Table 11: Leading Indicators in the Three Organizations
	Level
	Safety Factor
	Common Leading Indicators
	Specific Leading Indicators

	Organizational Level
	Hiring Quality People
	HQP2 – HQP6
	–

	
	Safety Orientation
	SO1 – SO5
	–

	
	Promotion of Safety
	POS1 – POS8
	–

	
	Formal Learning Systems
	FLS1 – FLS8
	–

	Vessel Level
	Prioritization of Safety
	–
	–

	
	Communication
	C2 – C7
	C1(Org. 2)

	
	Problem Identification
	PI1, PI2, PI4
	PI3 (Org. 3)

	
	Vessel Feedback
	VF1, VF2
	

	
	Vessel Responsibility
	VR1, VR2
	VR3, VR4 (Org. 2)

	Individual Level
	Empowerment
	EM2 – EM5
	EM1 (Org. 1)

	
	Anonymous Reporting
	AR2, AR3
	AR1, AR4 (Org. 3)

	
	Individual Feedback
	IF1, IF2
	

	
	Individual Responsibility
	IR1, IR2, IR4
	IR3 (Org. 3)

	
	Perceived Risk
	PR1 – PR4
	–


5.3  Generalizability Across Vessels
G-Study

In this G-study using the total sample data from the three organizations, the facet of vessel v will be used as the object of measurement. Our model is a (p: v) ( i unbalanced nested design with missing data. In this section, we will use v and d interchangeably.

In our design setting, there are a total of nv = 7 + 49 + 48 = 104 vessels, and ni = 62 items. The total number of people sampled on all vessels is np+ = 1599. The total number of observations is n+ = 97400. The sample mean of these 97400 observations is 
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4.4763. The generalizability result is shown in Table 12. By convention, v indicates the vessel effect, i indicates the item effect, and p:v indicates the people effect nested within vessels. They are main effects. The interaction effects include the effect of vessels combined with items, and the effect of items combined with people nested within vessels. Table 12 shows that although the variance components for the vessel effect, item effect, and the effect of vessels combined with items are low (<0.1), the standard deviations of these effects are still large (>20%). These large standard deviations further contribute to the high variance components for the people effects ((2(p:v) = 0.2266) and the interaction effects of items and people within vessels ((2(pi:v) = 0.4063). 
Table 12   Generalizability Summary for Total Sample

	Effect
	DF
	T
	SS
	MS
	(2

	(
	1
	1951669
	
	
	

	V
	103
	1957413
	5744.5975
	55.7728
	0.0438

	I
	61
	1956967
	5298.6916
	86.8638
	0.0547

	p:v
	1495
	1978653
	21240.1348
	14.2074
	0.2266

	Vi
	6283
	1968469
	5756.7239
	0.9162
	0.0336

	pi:v
	89457
	2026034
	36325.3510
	0.4061
	0.4063

	Variance of Absolute Error, (2((v) =
	0.0215

	Variance of Relative Error, (2((v) =
	0.0206

	Generalizability Coefficient G2 =
	0.6802

	Index of dependability (phi coefficient) ( =
	0.6710


Ideally, the variance component for vessels should be larger than any of the others. That means, different safety performance scores can be distinguished by sampling only a few number of people and items. However, Table 12 shows the effect of people, which has a larger variance component than vessels and items. The residual effect, i.e., the interaction effect of items and people within vessels, which also involves the people effect, has the largest variance component. This indicates that any generalizations about the vessel based on one or only a few crewmembers are not reliable and will lead to different conclusions. In other words, generalizations about the vessel’s safety performance will be more reliable if more people on the vessels are sampled. In this generalizability model, the average number of people is 11.62. Table 12 shows the variance of absolute error is 0.0215, and the variance of relative error is 0.0206.

The variance components in Table 12 will be used to estimate the reliability of making a generalization about the vessel’s safety performance based on the responses from the crewmembers on the vessels. Under the current setting, the generalizability coefficient is 0.6802, and the phi coefficient is 0.6710. Since we are interested in absolute decisions and relative decisions, both coefficients are important and analyzed. The question is at what levels the generalizability coefficient and the phi coefficient are acceptable. Hripcsak, Kuperman, Friedman & Heitjan (1999) propose that for system evaluation, a generalizability coefficient of 0.7 and higher is sufficient. The phi-coefficient is typically smaller than the generalizability coefficient. Considering the sample errors and estimate errors in this study, we will say that the generalizability coefficient and phi-coefficient can be considered good if both of them are greater than 0.65. Based on this criterion, the generalizability coefficient and phi-coefficient show good but not strong generalizability of the safety perception scores.

D-Study

Following the G-study, a D-Study was undertaken to obtain more reliable results by using various sample sizes so that the generalization of the vessel’s safety performance could be assessed.  The question is at what levels of the sample sizes of various facets the generalizability and phi coefficients will be improved to a higher level, so that the results can be generalizable. Since, in general, a generalizability coefficient of no less than 0.7 is good enough (Hripcsak, et al., 1999), our purpose is to improve the generalizability coefficient to 0.7, together with the phi-coefficient, by using various sample sizes.
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Figure 4    G2 and Phi Coefficients Varied by Sample Size

There are two methods to improve the coefficients: increasing the number of people per vessel sampled and responding, and/or increasing the number of leading indicator items used in the survey. Figure 4 shows how the generalizability and phi coefficients vary as a function of different number of people per vessel sampled and different number of items used based on the variance components reported in Table 12. Both panels in Figure 4 show that the generalizability coefficient is sufficient using the set of 62 items. In fact, the number of items is large enough to reduce the measurement error. The generalizability coefficient will be still sufficient even if we use only 32 items. This gives us the room to reduce the non-generalizable leading indicators. The number of people per vessel has a greater effect on the generalizability of the results. The Figure 1 results suggest that in order to obtain a generalizability coefficient of at least 0.7, it will be necessary to sample and get responses from 13 crewmembers; in order to obtain a phi-coefficient of at least 0.7 at the same time, then at least 14 crewmembers are needed to be sampled. Therefore, although we accept the generalizability results, the current average number of 11.62 people per vessel is not large enough if we strictly follow the 0.7 threshold value. Based on Figure 5, a sample 14 crewmembers on each vessel is required on average, and the number of leading indicator items should be reduced to 32.

In the next sections, we investigate the generalizability of the results in different organizations. We examine whether the organization has effect on the generalizability, that is, whether the leading indicator items are generalizable within an organization.

5.4 Vessel Generalizability Summary

The generalizability analysis was undertaken to determine whether the leading indicators were generalizable across different vessels. Generalizability coefficients and phi-coefficients were calculated from survey responses from shipboard personnel to provide measurements of reliability. A generalizability coefficient of at least 0.65 was required to infer generalizability. In order to increase the generalizability, two variables can be modified: the number of items used as leading indicators, and/or the number of shipboard personnel sampled. We first increased the sample size of the facet, which had a greater effect on the generalizability coefficient. However, as mentioned above, it usually takes more extra time, effort, and cost to increase leading indicator items because when we design the safety factor items, we do not know whether they are leading indicators. We have to do many statistical analyses to identify leading indicator items. Therefore, increasing the number of people per vessel sampled is preferred in most cases.
Table 13  Vessel Generalizability Summary by Leading Indicator

	Level
	Leading Indicator
	G-square
	Phi
	# items
	# individual sampled

	Organizational Level
	Hiring Quality People
	0.7348
	0.6954
	5
	11.6 (;12)

	
	Safety Orientation
	0.4065
	0.3777
	5 (7; 12)
	11.6 (45;48)

	
	Promotion of Safety
	0.6821
	0.6652
	8
	11.6 (13;15)

	
	Formal Learning Systems
	0.5375
	0.5090
	8
	11.6 (27; 38)

	Vessel Level
	Communication
	0.4863
	0.4724
	7
	11.6 (30; 36)

	
	Problem Identification
	0.4964
	0.4959
	4 (7; 27)
	11.6 (27; 27)

	
	Vessel Feedback
	0.5102
	0.5020
	2 (; 3)
	11.6 (27; 27)

	
	Vessel Responsibility
	0.4574
	0.4479
	4 
	11.6 (37; 42)

	Individual Level
	Empowerment
	0.5774
	0.5344
	5 (;6)
	11.6 (22; 29)

	
	Anonymous Reporting
	0.7165
	0.7084
	4
	11.6

	
	Individual Feedback
	0.5346
	0.5342
	2 (4; 4)
	11.6 (22; 22)

	
	Individual Responsibility
	0.4413
	0.4111
	4 (5; 7)
	11.6 (37; 45)

	
	Perceived Risk
	0.5456
	0.5167
	4 (;5)
	11.6 (24; 28)


Table 13 shows the summary results of generalizability models for each individual leading indicator using vessel as the object of measurement. G-square is the generalizability coefficient and phi indicates the phi-coefficient. The first number in the bracket indicates the sample size needed for generalizability coefficient no less than 0.7. The second number in the bracket indicates the sample size needed for phi-coefficient no less than 0.7. They are separated by semi-colon. The generalizable leading indicators are highlighted in bold. Some leading indicators are not generalizable under the current sample size. But if we can increase the sample size of some facet, they can become generalizable. These leading indicators are highlighted in italics. 

From Table 13, and consistent with the leading indicators results, three leading indicators were found to be generalizable across vessels, using the criterion of 0.65: 
Hiring Quality People (G2 = 0.7348)

Promotion of Safety (G2 = 0.6821)

Anonymous Reporting (G2 = 0.7165)

Several leading indicators were also shown to be generalizable if the sample size was increased: 
Formal Learning Systems (n = 27 people)

Communication ( n = 30 people)

Vessel Feedback (n = 27 people)

Empowerment (n = 22 people)

Perceived Risk (n = 24 people)

The remaining leading indicators were shown to be not generalizable across vessels. 

A natural question after identifying the generalizable leading indicator is how to use the results. Based on the definition of generalizability coefficient, if it is reliable, i.e. greater than 0.7, relative decisions can be made. That is, we can compare the safety performances of different vessels using the safety perception scores in generalizable leading indicators. We can also predict the rank of a particular vessel in terms of safety performance using the safety perceptions scores in generalizable leading indicators. Another question is that we notice there are only three generalizable leading indicators. Are they sufficient to predict the safety performance for vessels? In order to make the results more robust, we will also include the leading indicators, which can be generalizable if we can increase the sample sizes of the facets. The absolute decisions will be made based on the reliability of phi-coefficient. A detailed discussion follows in the next section. 
5.5 Generalizability Analysis Across Organizations
In the next steps, vessels were sampled, nested within organizations, to determine whether the leading indicators could be generalized across different organizations within the marine transportation system. Generalizability coefficients and phi-coefficients were calculated to provide measurements of reliability, with a generalizability coefficient of at least 0.7 considered to be sufficient. 
Table 14   Organizational Generalizability Summary for Each Leading Indicator

	Level
	Leading Indicator
	G-square
	Phi
	# items
	# individuals sampled

	Organizational Level
	Hiring Quality People
	0.9086
	0.8553
	5
	16

	
	Safety Orientation
	0.6649
	0.4876
	5(; 15)
	16 (21; 27)

	
	Promotion of Safety
	0.7700
	0.7478
	8
	16

	
	Formal Learning Systems
	0.7556
	0.6543
	8(; 10)
	16 (; 20)

	Vessel Level
	Communication
	0.5880
	0.4940
	7(; 10)
	16 (28; 60)

	
	Problem Identification
	0.6358
	0.6069
	4 (6; 7)
	16 (20; 22)

	
	Vessel Feedback
	0.4226
	0.3371
	2 (6; 9)
	16 (48; 68)

	
	Vessel Responsibility
	0.5676
	0.5143
	4 (7; 8)
	16 (28; 36)

	Individual Level
	Empowerment
	0.8572
	0.7308
	5
	16

	
	Anonymous Reporting
	0.9353
	0.9282
	4
	16

	
	Individual Feedback
	0.6258
	0.5666
	2 (5; 6)
	16 (20; 22)

	
	Individual Responsibility
	0.4756
	0.3068
	4 (7; 20)
	16 (45; 84)

	
	Perceived Risk
	0.7254
	0.5814
	4 (; 8)
	16 (; 22)



* Key : Generalizable Leading Indicators





Generalizable Leading Indicators with increased sample size



Non Generalizable Leading Indicators
Table 14 shows the summary results of generalizability models for each leading indicator using organization as the object of measurement. G-square is the generalizability coefficient and phi denotes the phi-coefficient. The first number in the bracket indicates the sample size needed for generalizability coefficient no less than 0.7. The second number in the bracket indicates the sample size needed for phi-coefficient no less than 0.7. They are separated by semi-colon. The generalizable leading indicators are highlighted in bold. Some leading indicators are not generalizable under the current sample size. But if we can increase the sample size of some facet, they can become generalizable. These leading indicators are highlighted in italics.

Four leading indicators are generalizable across different organizations: Hiring Quality People (G2 = 0.9086), Promotion of Safety (G2 = 0.77), Empowerment (G2 = 0.8572), and Anonymous Reporting (G2 = 0.9353) (Table 14). Note that Anonymous Reporting, a leading indicator not generalizable across the vessels sampled, was found to be generalizable across organizations. Several leading indicators are not generalizable under the current sample sizes; however, increasing the sample size does produce a generalizable result across organizations across different organizations: both Formal Learning Systems and Perceived Risk require at least 20 vessels and at least 8 items for a phi-coefficient of 0.7 (Formal Learning Systems G2 = 0.7556, 20 vessels, 10 items; Perceived Risk G2 = 0.7254, 22 vessels, 8 items). Several leading indicators are not generalizable across different organizations: Problem Identification, Vessel Feedback, Vessel Responsibility, Individual Feedback and Individual Responsibility. The generalizability results can be used to compare organizational safety performance. Relative decisions can be made based on generalizability coefficients, and absolute decisions made based on phi-coefficients, as discussed in the following section. 
5.5 Generalizability Summary 
A major contribution of this study is the development of a nested generalizability model using an unbalanced design and missing data. The unbalanced designs results from differing sample sizes of a facet at different levels, while missing data occurred for a variety of reasons, primarily because respondents failed to answer all survey questions. Although studies exist treating unbalanced designs and missing data (Cronbach, Gleser, Nanda & Rajaratnam, 1972; Brennan, 2001; Shavelson & Webb, 1991), few have been developed for safety-critical systems. There are three facets in the model: people, vessels, and leading indicator items. In the marine transportation system, managers, regulators, decision makers and the public are often interested in the safety performance of a vessel, and therefore the whole organization. Therefore, vessels and organizations were chosen as the objects of measurement, rather than individual crewmembers. The result is an unbalanced nested design with missing data generalizability model for leading indicators in marine transportation.  
The generalizability model considers different numbers of vessels and different numbers of crewmembers on vessels in different organizations, in order to determine whether the leading indicators were generalizable across different vessels and different organizations within the marine transportation system. Given a number of leading indicator items, different participants answered different numbers and portions of the items; thus, the model was an unbalanced nested design with missing data, a contribution to the safety-critical systems literature. In the G-study, variance components of main effects and interaction effects were estimated. In the D-study, the effect on generalizability was analyzed using different facet sample sizes. Appropriate sample sizes were chosen so that the generalizability coefficient (G-square), a measurement of generalizability, was at least 0.7 (Hripcsak et al., 1999).
The generalizability model showed the set of 62 leading indicator items was generalizable across vessels, and the number of items could be reduced to 22 while still maintaining the generalizability threshold. Interestingly, the results also showed differences by marine transportation sector: the 62 leading indicator items were generalizable across vessels in Organization 1 and 2, which are tanker organizations, but not generalizable across Organization 3, which is a container shipping organization. The generalizability of each leading indicator was tested across vessels and organizations, as in the marine transportation system, there is great interest in managing safety performance of vessels and organizations. The summary results are shown in Table 15. 

Table 15  Summary of Generalizable Leading Indicators by Factor Level

	Level
	Safety Factor
	Vessel as Object of Measurement
	Organization as Object of Measurement

	Organizational Level
	Hiring Quality People
	Generalizable
	Generalizable

	
	Safety Orientation
	NOT generalizable
	More sample sizes

	
	Promotion of Safety
	Generalizable
	Generalizable

	
	Formal Learning Systems
	More sample sizes
	More sample sizes

	Vessel Level
	Communication
	More sample sizes
	More sample sizes

	
	Problem Identification
	NOT generalizable
	NOT generalizable

	
	Vessel Feedback
	More sample size
	NOT generalizable

	
	Vessel Responsibility
	NOT generalizable
	NOT generalizable

	Individual Level
	Empowerment
	More sample sizes
	Generalizable

	
	Anonymous Reporting
	Generalizable
	Generalizable

	
	Individual Feedback
	NOT generalizable
	NOT generalizable

	
	Individual Responsibility
	NOT generalizable
	NOT generalizable

	
	Perceived Risk
	More sample sizes
	More sample sizes


Table 15 shows that three leading indicators (Hiring Quality People, Promotion of Safety and Anonymous Reporting) were generalizable across both vessels and organizations; one leading indicator (Empowerment) was generalizable across organizations alone. In addition, several leading indicators could be generalized by increasing the sample size, as indicated by leading indicators shown in italics in Table 15. Table 15 shows that the results are consistent using both vessels and organizations as the object of measurement; that is, most leading indicators (10 out of 13) maintain their generalizability in the two settings. Table 16 summarizes the generalizable leading indicators based on whether they are generalizable, generalizable if the sample size is increased, and not generalizable.
Table 16 Summary of Generalizable Leading Indicators by Generalizability

	
	Vessel as Object of Measurement
	Org. as Object of Measurement

	Generalizable Leading Indicators
	Hiring Quality People

Promotion of Safety

Anonymous Reporting
	Hiring Quality People

Promotion of Safety

Empowerment

Anonymous Reporting

	Generalizable with Larger Sample Size
	Formal Learning Systems

Communication

Vessel Feedback

Empowerment

Perceived Risk
	Safety Orientation

Formal Learning Systems

Communication

Perceived Risk



	Not Generalizable
	Safety Orientation

Problem Identification

Vessel Responsibility

Individual Feedback

Individual Responsibility
	Problem Identification

Vessel Feedback

Vessel Responsibility




The results in Table 16 differ from the results in Table 12, which shows common indicators, primarily because the two concepts are different. “Common” leading indicators refer to leading indicator that are identified in more than one organization. “Generalizable” leading indicators refer to a statistical concept related to the reliability of the leading indicators in measuring errors, considering multiple sources of errors, suggesting that the leading indicators designed for one vessel or organization can be used for other vessels and organizations. A generalizable leading indicator should be able to measure safety behaviors accurately with no or little influences of multiple error sources associated with different conditions, i.e. different respondents, different vessels, and/or different organizations.

The purpose of the generalizability model in this chapter is to estimate the magnitude of multiple sources of variance in the leading indicator design (G-study) and to determine the sample sizes so that sufficient generalizability can be achieved (D-study). Our eventual objective is to evaluate whether the leading indicators and leading indicator items designed in the survey for these three industry organizations can be used in other organizations in the marine transportation system. 

Tables 17 and 18 summarize the variance components of multiple sources in the generalizability models in terms of the percentage of variance explained by each source. The results suggest the following, about how respondents evaluate their safety perceptions, and provide insight into methods to improve and extend the use of the leading indicators in the marine transportation system. 
Table 17 Summary of Variance Components using Vessel as Object of Measurement

	Effect
	v
	i
	P:v
	vi
	pi:v

	HQP
	13%
	5%
	39%
	4%
	38%

	SO
	4%
	3%
	46%
	3%
	45%

	POS
	10%
	3%
	43%
	4%
	40%

	FLS
	4%
	4%
	33%
	3%
	56%

	C
	5%
	2%
	52%
	1%
	40%

	PI
	5%
	0%
	45%
	3%
	47%

	VF
	7%
	0%
	63%
	0%
	29%

	VR
	5%
	1%
	56%
	1%
	37%

	EM
	7%
	5%
	46%
	2%
	41%

	AR
	13%
	1%
	41%
	3%
	41%

	IF
	9%
	0%
	67%
	1%
	23%

	IR
	4%
	3%
	48%
	1%
	43%

	PR
	6%
	3%
	50%
	1%
	40%


Table 18 Summary of Variance Components using Organization as Object of Measurement

	Effect
	o
	i
	v:o
	oi
	vi:o

	HQP
	37%
	13%
	25%
	10%
	16%

	SO
	7%
	20%
	34%
	5%
	34%

	POS
	16%
	5%
	39%
	18%
	22%

	FLS
	11%
	17%
	31%
	10%
	31%

	C
	5%
	12%
	55%
	1%
	26%

	PI
	10%
	3%
	50%
	8%
	28%

	VF
	4%
	5%
	69%
	1%
	21%

	VR
	6%
	5%
	60%
	3%
	26%

	EM
	20%
	20%
	34%
	5%
	21%

	AR
	45%
	1%
	30%
	4%
	20%

	IF
	10%
	3%
	69%
	2%
	15%

	IR
	4%
	17%
	47%
	3%
	29%

	PR
	11%
	15%
	52%
	2%
	21%


In Tables 17 and 18, the variance components associated with items are generally small, explaining no more than 5% of the variance if using vessels as the object of measurement or 1%-20% of the variance if using organizations as the object of measurement. This indicates consistency across leading indicator items and suggests that the leading indicators designed in the survey specify important sources of variance. It suggests that the survey designed for the three organizations can also be used across different vessels and organizations in the marine transportation system.

In addition, Tables 17 and 18 show that the variance components associated with the objects, vessels or organizations, are larger than the variance components of items. This is expected since ideally, the variance components for vessel or organization should be larger than any of the other sources so that the differences in safety behaviors of the vessels or organizations can be identified. Further, for the generalizable leading indicators, the variance components of the objects were relatively large. For example, only the variance components of the generalizable leading indicators are greater than 10% in Table 17. In Table 18, the variance components of organizations explain 37% of the variance for “Hiring Quality People”, 20% for “Empowerment”, and 45% for “Anonymous Reporting”. This further verifies that large variance components associated with the objects, vessels or organizations, are expected, and the design of leading indicator is good in our study. This may explain another interesting finding in Table 35 and 36: none of leading indicators at the vessel level is generalizable. That is, we expect the large variance components of vessels.

In summary, the design of the leading indicators is robust enough to specify reliability in safety behavior evaluation across different vessels and organizations. The items, particularly those in the generalizable leading indicator metrics, can be used directly in practice. Industry organizations in marine transportation system can use the survey to evaluate their crewmembers’ safety perceptions respectively. In addition, authorities, associations, and unions in the MTS can use this survey form to evaluate the safety perceptions of all organizations registered under them. It also shows that it possible to increase the economic efficiency of future applications by determining the length of survey without loss of quality using the D-study results. In order to improve the generalizability of the survey form, the following actions can be taken in the future. First, the non-generalizable leading indicators can and should be excluded from the survey form. A high response rate can be expected with a shortened form of survey. Also the low variance of items in Table 17 and 18 suggests the original data is adequate, and removing a certain number of items will not decrease the generalizability coefficient dramatically.
6. Discussion and Summary

This research addresses the challenge of identifying generalized leading indicators in safety-critical systems. The first major research challenge in this study is to examine the generalizability of leading indicators identified in the study samples, i.e. whether the leading indicators identified in the study samples can be generalized to other organizations in the marine transportation system and other industries. In order to answer this question, we developed a compositional multi-level approach combining multiple methods, specifically factor analysis and canonical correlation analysis in order to simultaneously explore significant relationships between the set of safety factor items and the set of safety performance variables. The common and specific leading indicators in three industry partners were identified; based on these results, a generalizability model for the leading indicators was developed. 
The generalizability model developed in this study is an unbalanced nested design considering missing data. In order to handle missing data, instead of generating random numbers from simulation or deleting observations with missing data arbitrarily, varying sample sizes were used in the calculation of the magnitude of variance components and the generalizability coefficients. The model incorporated all sample data, improving model accuracy, compared with earlier balanced crossed design results.  The results show that the set of identified leading indicators were generalizable across tankers, but not generalizable across containers, suggesting that the non-generalizable leading indicators should be removed from the model and alternate leading indicators should be identified, considering characteristics of container shipping. The generalizability of each leading indicator was found using vessels and organizations as the objects of measurement as follows:

· Generalizable leading indicators: Hiring Quality People, Promotion of Safety, Anonymous Reporting;

· Generalizable leading indicator, with a larger sample size: Formal Learning Systems, Communication, Empowerment, Perceived Risk;

· Non-generalizable leading indicators: Safety Orientation, Problem Identification, Vessel Feedback, Vessel Responsibility, Individual Feedback, Individual Responsibility.

It is worth noting that the generalizable leading indicators cross all three levels of analysis—organizational, vessel and individual, results that are consistent with those  from earlier human and organizational error and safety case research studies (Appendix Tables A1, A2) showing precursors or tiny initiating events (TIEs) emergent at multiple levels of complex systems. These studies, when coupled with forensic accident and incident analyses after a catastrophic event, strongly endorse identifying and proactively managing human and organizational antecedents to disaster, lest the conditions cascade and produce a highly undesirable result. Thus, safety performance is the consolidated consequence of various leading indicators, and are “rarely attributed to only one cause. … They are related to training, information, communication, and work behaviors” (Gonçalves et al., 2008). 

In summary, the research contributions in this study are as follows:

(1) A systematic approach is developed to identify leading indicators in the marine transportation system with multiple methods.

(2) Canonical correlation analysis is developed to explore the significant relationships between the set of safety factor items and the set of safety performance variables simultaneously instead of only two variables. Structural equation modeling (SEM) is developed to estimate and test the causal relationships among safety factor items and safety performance variables.

(3) This research is a pioneer study in applying generalizability model in the marine transportation system, a type of safety-critical systems.

(4) This research develops a generalizability model of unbalanced nested design considering missing data.

(5) The current set of leading indicators is found to be generalizable for tanker operations, but not generalizable for container operations.

Limitations and Future Work

More data are always desired to test and validate the findings in the future in any research. Besides this, there are several limitations in this research, which can be improved in future works.

First, this research is a cross-sectional study. That is, in this research, we sampled and investigated the relationships between safety performance and safety factors during the same time period. However, some studies believe “accident experience will change workers’ behaviors after the accident, and the behaviors will affect work accident experience after a certain period” (Gonçalves et al., 2008). This means the direct effects of safety performance and leading indicators on each other may not occur at the same time period. This would imply a longitudinal study in the future which was not covered in this research. More data need sampling over time. Future works can study how leading indicators change over time, how the improvement of behaviors in leading indicators changes the safety performance, and how the safety performance provide organizational procedures, policies and responses to changes in leading indicators over time.

Second, based on the generalizability results, the non-generalizable leading indicators should be deleted from the survey form. Future work includes the design of a new questionnaire survey form, where non-generalizable leading indicators are removed and new leading indicators are identified. Then the new survey form can be sent to the shipboard to collect new data. It is interesting to investigate whether more generalizable leading indicators can be identified, and whether the generalizabilities of the leading indicators which need more sample data are improved in the future.

Third, the prediction results show that in safety-critical systems, leading indicators alone are not sufficient to provide early warnings. It is demanding to apply qualitative risk assessment to analyze safety performance, together with leading indicators. Many qualitative analysis methods, such as safety cases, case studies, and human error analysis were used. But they were all used individually, not integrated with leading indicators or other sophisticated quantitative methods. A compositional approach with a mixture of these qualitative methods and leading indicators is needed in future works. That is, it is desirable to develop an integrated process, which combines various qualitative methods with leading indicators closely, to identify generalizable leading indicators, evaluate safety performance, and provide early warnings to take proactive actions to prevent adverse events.
Self-organization in complex systems typically appears at the ‘region of emergence’ between the ‘edge of order’ and the ‘edge of chaos,’ often termed the first and second critical values of imposed energy or tension (Stauffer, 1987; Kauffman, 1993). As systems tip across the edge of order – like molecules in a teapot under a rolling boil – phase transitions occur in which new kinds of order (structure and process) emerge (Andriani & McKelvey, 2010, p. 62). These new kinds of order can be catalysts for complex systems to self-organize in adaptive and novel ways (McKelvey, 2008).
?? However, thirdly, we found the variance components associated with people are larger than the variance components of objects and items, and even the largest one in most leading indicators. This indicates the inconsistency of scores across people. A detailed study shows that many people did not respondent to all questions, and some only answered a small number of questions. It provides useful information to take measures to make the behavior scores more reliable and make this variance smaller in future evaluation. These measurements include keeping the crewmembers updated about safety instructions, procedures, and rules. The crewmembers should also be informed of any regulation changes, safety meetings, and feedbacks, with official documents. In addition, crewmembers should also be trained and monitored to score the surveys so that more information will be collected and therefore more reliability will be achieved.

Fourthly, if the magnitude of a generalizability coefficient is above 0.7, indicating a larger proportion of true score variance than error variance, only some of the leading indicators (3 using vessels and 4 using organizations) satisfy this criterion. This indicates that some portion of the variance is not specified by the sources. This is verified by the large variance components of the interaction effect of all these facets, which is called the residual variance components in some studies (Sudweeks et al., 2005; Echambadi et al., 2006). Future studies should sample more people systematically to reduce the variance of the people effect and the interaction effects associated with people. We should also explore whether the scores are valid, by investigating whether those with high scores on leading indicators perceive and perform better. ?? 
Last but not least, we notice that the third research challenge mentioned in Chapter 1 and 2 is to develop a generalized prediction model for organizations across different industries. Current literature shows it impossible to develop a generalized prediction model even within the same industry. Sawalha and Sayed (2006) tried to generalize the traffic accident prediction model from one region during one time period to other regions and time periods, but they failed. Many studies (Collins and Green, 1982; Grice and Ingram, 2001; Ohlson, 1980; Premachandra et al., 2009) tried to generalize Altman’s bankruptcy prediction model (Altman, 1968) to other periods and non-manufacturing firms, but they all failed. It is even impossible to develop a generalized prediction model across different industries because different industries have different features. For example, Altman’s model used objective financial ratios while in our study, we used subjective safety perceptions. A realistic future work is to narrow the focus of prediction models to the safety-critical systems only, and allows parameter recalibration. Therefore, future works includes sending the questionnaire survey with generalizable leading indicators to other safety-critical systems to sample the safety perceptions as well as safety performance measures. And then the prediction models developed in this study, including logistic regression model and regression model with fuzzy logic, can be applied to these safety-critical systems with necessary parameter calibration. The purpose is to investigate whether the framework of prediction model developed in this study can be generalized to other safety-critical systems. 

----------------------------
8. Summary – from old paper 
Safety factor studies have identified a number of common safety factors over the years that were predictive of safety performance, including knowledge, management attitude to safety, safety behavior, attitude to safety rules/instruction, employees’ satisfaction with safety and quality, concentration of authority, training experience, quality experience, stress experience, actions after an unsafe act, and environmental system. Common safety factors between [37] and this research include the safety factors Responsibility, Prioritization of Safety, Empowerment, Communication, Feedback, Promotion of Safety, and a Formal Learning System; in addition, Håvold [37] identified the link between environmental systems and stress and safety. The common safety factors between this research and [38] include the safety factors Responsibility, Prioritization of Safety, Empowerment, Communication, Anonymous Reporting, and Safety Orientation. Interestingly, this research identified a significant safety factor not considered in other research, the importance of Hiring Quality People, which was a major driver for each of the high performing, highly safety-focused industry partners in this research. 

Finally, identifying generalized leading indicators can be difficult when qualities or characteristics of their systems have their theoretical origins at the individual level and emergent properties at higher levels—for instance, in systems where organizational climate, individual and team effectiveness, and organizational learning are important. Organizational culture and climate are both individual and group level constructs—incorporate 2009 climate references, along with Klein & Kozlowski references….. Thus, leading indicators of adverse events in complex, multi-level systems of organizations often reflect the complexity of their domain and provide precursors at multiple organizational levels (House, Rousseau & Thomas-Hunt, 1995), and clues to future leading indicators. 

Complexity science suggests that attention to scalability, power laws and qualities of self organization can provide powerful insights and clues into precursors of adverse events in complex, large-scale systems. Scalability laws suggest that, under the right circumstances, tiny initiating events can scale up into extreme positive or negative outcomes, so that the same cause applied at multiple levels gets amplified to generate an extreme effect extending across multiple levels (McKelvey & Andriani, 2010, p. 60). Scale-free theories point to a single generative cause to explain the dynamics at each of however many levels are being studied. Power laws have been used as indicators of scalability in action and consequently, underlying Pareto distributions (Andriani & McKelvey, 2007; 2008; 2009). Self-organization in complex systems typically appears at the ‘region of emergence’ between the ‘edge of order’ and the ‘edge of chaos,’ often termed the first and second critical values of imposed energy or tension (Stauffer, 1987; Kauffman, 1993). As systems tip across the edge of order – like molecules in a teapot under a rolling boil – phase transitions occur in which new kinds of order (structure and process) emerge (Andriani & McKelvey, 2010, p. 62). These new kinds of order can be catalysts for complex systems to self-organize in adaptive and novel ways (McKelvey, 2008).   [these two paragraphs from page 5] 

Study Limitations
Caution is advised with these results, as there are several limitations to this research. First, as has been noted several times, the analysis suffers from a small sample size. Secondly, analysis in other safety-critical systems is required in order to establish the generalizability of these findings. Finally, the factor analysis technique assumes linear relationships among the variables, an assumption that may not be met with the data. Although the results show strong model fits, other techniques should be explored to examine the nonlinear relationships among the variables. These limitations provide fruitful direction for future work.
Lastly, this research addresses the research challenge of developing a generalized prediction model for organizations across different industries: The current literature suggests that the difficulties in tackling this problem are manifest.  To date, it has been difficult to develop a generalized prediction model across different industries because different industries have different features. A realistic future work is to narrow the focus of prediction models to the safety-critical systems only, and allows parameter recalibration. Therefore, future works includes sending the questionnaire survey with generalizable leading indicators to other safety-critical systems to sample the safety perceptions as well as safety performance measures. And then the prediction models developed in this study, including logistic regression model and regression model with fuzzy logic, can be applied to these safety-critical systems with necessary parameter calibration. The purpose is to investigate whether the framework of prediction model developed in this study can be generalized to other safety-critical systems. 
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2.3 The Importance of Safety Culture 
Although organizational policies, practices and procedures are the antecedents of individual-level climate perceptions, individuals in organizations do not exist in a vacuum. People in groups and teams are exposed to common features, events and processes. They interact, share interpretations, which over time may converge on consensual views of the group or organizational climate (16, 17—James, 1982; Kozlowski & Hattrup, 1992). Processes such as attraction, selection and attrition (ASA); socialization (18—Schneider & Reichers, 1983) and leadership (19—Kozlowski & Doherty, 1989) also operate to reduce the variability of individual differences and perceptions, facilitating common interpretations of organizational climate. In such conditions, individual-level perceptions can be averaged to represent higher-level group, subunit or organizational climates (20-22—Jones & James, 1979; Kozlowski & Hults, 1987; Schneider & Bowen, 1985). This work emphasizes the importance of bottom-up emergent processes that yield higher-level phenomena. Thus, individual social-psychological processes can be manifest as a group, subunit and organizational phenomena and need to be explicitly incorporated into meaningful models of organizational behavior (14—Klein & Kozlowski, 2000, p. 5). 

2.4 Multilevel Emergent Analyses of Safety Culture 

Emergent Models of Safety Climate

An organization’s climate is a reflection of organizational members’ shared perceptions of the extent to which organizational policies, procedures and practices reward and encourage behavior (22--Schneider & Bowen, 1985). An organization’s climate—whether positive or negative—emerges from the shared, homogeneous perceptions of organizational members (14--Klein & Kozlowski, 2000, p. 9). Thus, individual and organizational climates are essentially the same construct, although there are some qualitative differences at higher levels. Organizational climate is more inclusive and may have some unique antecedents relative to its lower level origin in psychological climate (23--Rousseau, 1988). 

However, sometimes lower level phenomena do not coalesce. P.9—Klein & Kozlowski, 2000. 

Explanation of differences between OSG and Maersk/SeaRiver results (tanker vs. container) 

Temporal concerns influence our notions of organizational culture, and time as a boundary condition for this leading indicator model is an important perspetive. For instance, organizational culture is more likely to be based on emergent processes, either when the organization is at an early point in its life cycle or when the organization is undergoing dramatic change (OSG). In effect, individual sensemaking and social construction are more active and have greater influence when the organizational context is ambiguous or in a state of flux (OSG results; 14--Klein & Kozlowski, 2000. p. 12). Therefore, development or change will appear to be a bottom-up process. Over time, however, culture becomes stable and institutionalized. Formative events that were salient during emergence become the stuff of legend, myth and tradition. Founding members move on. New members are socialized and assimilated into enduring contexts that resist change. Therefore, organizational culture appears to have a top-down influence on lower-level units (Maersk, Sea-River results) (14--Klein & Kozlowski, 2000, p 12). 

Explanation for larger visibility of organizational effects, vs. individual effects

Time-scale variations also occur across levels, as differences in time scales affect the nature of links among levels (25--Simon, 1973). Lower-level phenonmena tend to have more rapid dynamics than higher-level and emergent phenomena, which makes it easier to detect changes in lower-level entities (14—Klein & Kozlowski, 2000, p. 13). For example, efforts to improve organizational outcomes through training assume emergent effects that originate at the individual level. Time-scale differences allow top-down effects on lower levels to manifest quickly. Bottom-up emergent effects manifest over longer periods (14—Klein & Kozlowski, 2000 p. 13). 

Another impact on manifest effects is entrainment, defined as the rhythm, pacing and synchronicity of processes that link different levels (15, 27—Ancona & Chong, 1997; House, et al., 1995). Coupling across levels or units is tightened during periods of greater entrainment (faster pace, synchronicity). Entrainment is influenced by task cycles and work flows, budget cycles and other temporally constructed events that pace organizational life (27—Anacona & Chong, 1997). For instance, work-flow interdependence is shown to vary over time, as the degree of coupling between units, depending on the timing of events or acts that require synchronous and coordinated response (28, 29--McGrath, 1990; Kozlowski, Gully, McHugh, Salas & Cannon-Bowers, 1996). Thus, levels or units that are loosely coupled can be tightly coupled during periods of synchronicity (30; 31—Weick & Edmondson, 2003; Perrow, 1984; other variants of tight vs loosely coupled;  

A social organization can be conceptualized as a set of subsystems composed of more elemental components that are arrayed in a hierarchical structure. The linkage among levels—individual, group and organizational—and subsystems is determined by their bond strength, defined as the extent to which characteristic behaviors, dynamics and processes of one level or unit influence the characteristics, behaviors dynamics and processes of another level or unit (25--Simon, 1973). Karl Weick (26-1976) uses the same notion of coupling to describe how closely tied different units or subsystems are, and factors such as organizational goals, technology and structure as well as enabling processes such as leadership, socialization and culture, influence coupling (Klein & Kozlowski, 2000). These factors that are related to coupling or bond strength between organizational units can be expected to show greater links across levels for the related units (Klein & Kozlowski, 2000). 

Organizational Level Perceptions and Organizational Level Performance

Huselid (1995) describes organizational-level relationships among human resource practices, aggregate employee outcomes and firm financial performance; Klein & Kozlowski (2000) call for cross-level and emergent processes—the linkages of individual responses to human resource practices—that mediate the relationship between organizational human resource practices and organizational performance (24--Ostroff & Bowen, chapter 5, Klein & Kozlowski, 2000). 

Appendix A – Benchmarking Studies

Table A1  Methods used in Leading Indicator Studies in MTS and other Industries

	Method
	Other Marine Transportation System Studies 
	Other Industries

	EFA/CFA/PCA
	Håvold (2005); Håvold & Nesset (2009); Lu & Shang (2005)
	Brown & Holmes (1986); Clarke (1999); Cox & Cheyne (2000); Evans et al. (2007); Glendon & Litherland (2001); Grote (2008); Johnson (2007); Mearns et al. (1998, 2001); Pousette et al. (2008); Westaby & Lee (2003); Williamson et al. (1997); Zohar (2000)

	Correlation Analysis (Pearson, Spearman, Canonical)
	Håvold (2005); Lu & Shang (2005)
	Díaz & Cabrera (1997); Ek et al., (2007); Johnson (2007); Pousette et al. (2008); Tharaldsen et al. (2008); Zohar (1980); Zohar (2000); Zohar & Luria (2005)

	Regression
	Håvold (2005)
	Cooper & Phillips (2004); Ek et al., (2007); Meliá et al., 2008; Pousette et al. (2008); Zohar (2000); Zohar & Luria (2005)

	ANOVA, MANOVA, t-test, F-test
	Ek & Akselsson (2005); Lu & Shang (2005)
	Clarke (1999); Ek et al., (2007); Glendon & Litherland (2001); Tharaldsen et al. (2008); Williamson et al. (1997);

	SEM
	Håvold & Nesset (2009)
	Johnson (2007)

	Others (discriminant analysis, cluster analysis)
	Håvold (2005); Lu & Shang (2005); Turker & Deha Er (2008)
	Zohar (1980)


Table A2  Leading Indicators (Safety Factors) Comparison 

with Other Shipping Organizations and Industries

	Level
	Safety Factor
	Other Marine Transportation System Studies
	Other Industries

	Organizational Level
	Hiring Quality People
	Turker & Deha Er (2008): Recruitment. 

Lu & Shang (2005): Co-workers care about safety
	

	
	Safety Orientation
	Håvold (2005), Håvold & Nesset (2009): Knowledge; Training experience. 

Turker & Deha Er (2008): Emergency preparedness and contingency planning. 

Lu & Shang (2005): Safety training and education.
	Cooper & Phillips (2004): Safety training; proactive practice

Evans et al. (2007): Safety training.

Grote (2008): Individual support; training. 

Zohar (1980): Safety training.

	
	Promotion of Safety
	Håvold (2005), Håvold & Nesset (2009): Management attitude to safety; Satisfaction with safety; Quality experience. 

Ek & Akselsson (2005): Attitudes towards safety. 

Turker & Deha Er (2008): Management, leadership, and accountability; Emergency preparedness and contingency planning. 

Lu & Shang (2005): Supervisor safety.
	Brown & Holmes (1986): Management concern and activity. Cooper & Phillips (2004): Management attitudes toward safety; Social status & promotion. 

Cox & Cheyne (2000): Management commitment. 

Ek et al. (2007): Attitudes towards safety. 

Glendon & Litherland (2001): Personal protective equipment; safety rules. 

Johnson (2007): Caring. 

Mearns et al., (2001): Safety attitude. Meliá et al. (2008): Organizational safety response. 

Westaby and Lee (2003): Safety consciousness. 

Williamson (1997): Motivation for safety behavior. 

Zohar (1980): Promotion; Management attitudes toward safety.

	
	Formal Learning Systems
	Håvold (2005), Håvold & Nesset (2009): Concentration of authority; Reporting Culture; Learning culture and communications. 

Ek & Akselsson (2005): Learning; Reporting Culture. 

Turker & Deha Er (2008): Measurement, analysis and improvement; Incident investigation and analysis.
	Ek et al. (2007): Learning. 

Grote (2008): Feedback, continual improvement. 

Mearns et al. (1998): Safety measures. 

Tharaldsen et al. (2008): safety comprehension. 

Westaby and Lee (2003): safety knowledge. 

Zohar and Luria (2005): Active practices; Declarative practices



	Vessel Level
	Prioritization of Safety
	-
	Cox & Cheyne (2000): Safety Prioritization. 

Díaz & Cabrera (1997): Productivity and safety.

Niskanen (1994): Safety as part of productive work. 

Tharaldsen (2008): Safety Prioritization.

	
	Communication
	Håvold (2005), Håvold & Nesset (2009): Learning Culture and Communications. 

Ek & Akselsson (2005): Communication
	Cox & Cheyne (2000); Ek et al. (2007); Evans et al. (2007); Glendon & Litherland (2001); Grote (2008); Mearns et al. (1998); Pousette et al. (2008); 

	
	Problem Identification
	Håvold (2005), Håvold & Nesset (2009): Satisfaction with safety activities and safety rules.
	Cox & Cheyne (2000): Safety rules. Johnson (2007): Compliance. 

Mearns et al. (1998): Rules and regulations. 

Pousette et al. (2008): Safety standards and goals. 

Williamson (1997): Risk justification.

	
	Vessel Feedback
	
	Johnson (2007): Coaching. 

Zohar & Luria (2005): Declarative practices.

	
	Vessel Responsibility
	
	Mearns et al. (1998): Site management. 

Pousette et al. (2008): Workgroup safety involvement. 

	Individual Level
	Empowerment
	Lu & Shang (2005): Workers are involved in setting safety goals and decisions.
	Grote (2008): Involved in decision process. 

Pousette et al. (2008): Personal involvement

	
	Anonymous Reporting
	Ek & Akselsson (2005): Justness.
	Ek et al. (2007): Justness.

	
	Individual Feedback
	
	Mearns et al., (2001): Satisfication with measures. 

Zohar & Luria (2005): Declarative practices. 

	
	Individual Responsibility
	
	Meliá (2008): Co-workers’ safety response. 

Pousette (2008): individual responsibility. 

	
	
	
	


























































































































































































































































Figure 3     Determining Leading Indicators
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